APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 291-304    DOI: 10.1007/s11770-025-1190-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种无缆实时遥测地震系统的改进和应用
啜晓亚,沈金松*,陈名德,田玉昆,贺艳晓,周德山,啜晓宇
1.中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249;2.中国石油大学(北京) 地球物理学院,北京 102249;3.油气资源与勘探技术教育部重点实验室 (长江大学),湖北 武汉 430100;4.长江大学地球物理与石油资源学院,湖北 武汉 430100;5.中国石化石油物探研究院, 江苏 南京 2111032;6.中国地质调查局自然资源综合调查指挥中心,北京 100055
The Improvement and Application of a Wireless Real-Time Telemetry Seismic System
Chuai Xiao-ya, Shen Jin-song*, Chen Ming-de*, Tian Yu-kun, He Yan-xiao, Zhou De-shan, Chuai Xiao-yu
1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China. 2. College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China. 3. Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province), Yangtze University, Wuhan 430100, China. 4. School of Geophysics and Petroleum Resources, Yangtze University, Wuhan, Hubei 430100, China. 5. Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing 100055, China. 6. Sinopec Petroleum Exploration and Production Research Institute, Nanjing, Jiangsu 211103, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文研发了一套基于4G/5G的无缆实时遥测地震采集系统(以下简称无缆实时遥测系统),实现了地震数据实时采集和实时质控、设备位置与健康状态实时监控、云端和客户端采集数据实时同步传输、指令实时下发。 解决了现有地震节点设备只能“盲采盲存”(即指采集节点设备与中央控制单元无有线或无线通讯链路,且数据需本地存储的一种数据采集设备)的瓶颈问题,由于其无法对数据进行实时质控,一般地需在采集任务完成后整体回收并下载数据后进行质控,若发现数据存在质量问题,需剔除坏道后确定补采集方案,往往会造成采集工期滞后的问题。无缆实时遥测系统设备健康状态实时监控预警,避免了设备异常造成采集数据质量差的问题。云端和服务端实时同步传输采集数据,解决了“盲采盲存”时大量节点设备数据集中下载,造成下载速度慢的问题。该系统在东部某油气田压裂现场进行了微震数据实时采集测试和验证,测试数据分析表明,系统整体性能指标与现有主流系统设备性能参数相当,且稳定可靠,指标参数完全满足油田压裂监测场景的技术要求,具有良好的推广应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词无缆实时采集   遥测地震仪   4G/5G网络   云采集端   微地震     
Abstract: This article introduces a cable-free real-time telemetry seismic acquisition system (hereinafter referred to as the cable-free real-time telemetry system) that utilizes 4G/5G technology. This system facilitates the real-time acquisition and quality control of seismic data, the real-time monitoring of equipment location and health status, the synchronous transmission of collected data between the cloud and client, and the realtime issuance of operational instructions. It addresses the critical limitation of existing seismic node equipment, which is often restricted to mining and blind storage due to the absence of a wired or wireless communication link between the acquisition node device and the central control unit. This limitation necessitates local data storage and rendering real-time quality control unfeasible. Typically, quality control is conducted post-task completion, requiring the overall retrieval and downloading of data. If data issues are identified, it becomes necessary to eliminate faulty tracks and determine the need for supplementary acquisition, which can lead to delays in the acquisition process. The implementation of real-time monitoring and early warning systems for equipment health status aims to mitigate the risk of poor data quality resulting from equipment anomalies. Furthermore, the real-time synchronous transmission between the cloud and server addresses the bottleneck of slow download speeds associated with the centralized retrieval of data from multiple node devices during blind acquisition and storage. A real-time microseismic data acquisition test and verifi cation were conducted at a fracturing site in an eastern oil and gas fi eld. Analysis of the test data indicates that the overall performance indicators of the system are comparable to those of existing mainstream system equipment, demonstrating stability and reliability. The performance parameters fully satisfy the technical requirements for oilfield fracturing monitoring scenarios, suggesting promising prospects for further promotion and application.
Key wordsCable-free real-time acquisition    telemetry seismograph    4G/5G network    cloud acquisition terminal    microseism   
收稿日期: 2024-10-01;
基金资助:国家自然基金项目(42074127,41930425);
通讯作者: 沈金松 (Email:shenjinsong@cup.edu.cn);陈名德 (Email:2022710364@yangtzeu.edu.cn).     E-mail: shenjinsong@cup.edu.cn;2022710364@yangtzeu.edu.cn
作者简介: 啜晓亚(1989-),女,博士研究生在读,主要从事地球物理理论方法及系统设备研发和应用研究.E-mail:chuaixiaoya007@126.com
引用本文:   
. 一种无缆实时遥测地震系统的改进和应用[J]. 应用地球物理, 2025, 22(2): 291-304.
. The Improvement and Application of a Wireless Real-Time Telemetry Seismic System[J]. APPLIED GEOPHYSICS, 2025, 22(2): 291-304.
 
没有本文参考文献
[1] 刘伟建, 侯梦杰*,董森森, 肖扬, 邓志刚, 王浩楠, 张志增. 多场耦合的冲击地压防治研究[J]. 应用地球物理, 2024, 21(1): 119-132.
[2] 唐杰, 刘英昌 , 温雷 , 李聪. 黏弹性正交各向异性介质微地震震源衰减补偿逆时定位*[J]. 应用地球物理, 2020, 17(4): 544-560.
[3] 喻志超,于静,冯方方,谭玉阳,侯贵廷,何川. 基于曲线拟合的微地震震相初至拾取方法*[J]. 应用地球物理, 2020, 17(3): 453-464.
[4] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[5] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[6] 杨瑞召, 赵争光, 彭维军, 谷育波, 王占刚, 庄熙勤. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用[J]. 应用地球物理, 2013, 10(2): 157-169.
[7] 缪华祥, 姜福兴, 宋雪娟, 杨淑华, 焦俊如. 基于层析成像的矿山微震震源函数和震源参数反演[J]. 应用地球物理, 2012, 9(3): 341-348.
[8] 缪华祥, 姜福兴, 宋雪娟, 宋建勇, 杨淑华, 焦俊如. 矿山微地震全波自动定位的层析成像方法[J]. 应用地球物理, 2012, 9(2): 168-176.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司