APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 157-169    DOI: 10.1007/s11770-013-0374-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用
杨瑞召1,赵争光1,彭维军1,谷育波1,王占刚1,庄熙勤2
1. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
2. 中国石化华北石油局地球物理勘探公司,新乡 453000
Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs
Yang Rui-Zhao1, Zhao Zheng-Guang1, Peng Wei-Jun1, Gu Yu-Bo1, Wang Zhan-Gang1, and Zhuang Xi-Qin2
1. School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China.
2. Geophysical Prospecting Company of SINOPEC North China Bureau, Xinxiang 453000, China.
 全文: PDF (1917 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 非常规资源如页岩气和致密砂岩气的开发,要求综合利用多学科的知识,以解决诸多工程问题来获得经济产能。不同类型数据如三维地震和微地震数据所揭示出的储层非均质性能,更深入全面地揭示储层特性并优化钻井和完井程序。本文研究中,首先利用三维地震曲率属性预测了储层局部应力方向及天然裂缝闭合状态,获得了储层非均质性信息及地质力学性质;利用蚂蚁体预测了储层裂缝网络以及利用曲率和蚂蚁体结合预测了潜在的影响水力裂缝延伸的压裂屏障。其次利用三维地震获得的上述信息指导压裂方案设计及施工参数调整。最后,综合三维地震解释结果和微地震成像结果解释了压裂施工过程中出现砂堵的原因,明确了致密砂岩储层水力裂缝延伸及天然裂缝开启闭合控制因素。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞召
赵争光
彭维军
谷育波
王占刚
庄熙勤
关键词致密砂岩气   三维地震   微地震   油藏描述   水力压裂   压裂屏障     
Abstract: The development of unconventional resources, such as shale gas and tight sand gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneity revealed by different data sets, such as 3D seismic and microseismic data, can more fully reflect the reservoir properties and is helpful to optimize the drilling and completion programs. First, we predict the local stress direction and open or close status of the natural fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoir heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affect hydraulic fracture propagation are predicted by integrating the seismic curvature attribute and ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assist in designing the fracture program and adjusting stimulation parameters. Finally, we interpret the reason why sand plugs will occur during the stimulation process by the integration of 3D seismic interpretation and microseismic imaging results, which further explain the hydraulic fracture propagation controlling factors and open or closed state of natural fractures in tight sand reservoirs.
Key wordstight sand gas   3D seismic   microseismic   reservoir characterization   hydraulic fracture   and fracture barrier   
收稿日期: 2012-10-17;
引用本文:   
杨瑞召,赵争光,彭维军等. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用[J]. 应用地球物理, 2013, 10(2): 157-169.
YANG Rui-Zhao,ZHAO Zheng-Guang,PENG Wei-Jun et al. Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs[J]. APPLIED GEOPHYSICS, 2013, 10(2): 157-169.
 
[1] Birkelo, B., Goertz, A., LaBarre, E., et al., 2011, Locating high-productive areas of tight gas-sand reservoirs using LF seismic surveys: 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC, C016.
[2] Blumentritt, C. H., Marfurt, K. J., and Sullivan, E. C., 2006, Volume-based curvature computations illuminate fracture orientations—Early to Mid-Paleozoic, Central Basin Platform, West Texas: Geophysics, 71(5), B159 - B166.
[3] Chopra, S., and Marfurt, K. J., 2007a, Curvature attribute applications to 3D surface seismic data: The Leading Edge, 26(7), 404 - 414.
[4] Chopra, S., and Marfurt, K. J., 2007b, Volumetric curvature attributes for fault/fracture characterization: First Break, 25(5), 35 - 46.
[5] Chopra, S., and Marfurt, K. J., 2008, Emerging and future trends in seismic attributes: The Leading Edge, 27(3), 298 - 318.
[6] Chopra, S., and Marfurt, K. J., 2010, Integration of coherence and volumetric curvature images: The Leading Edge, 29(9), 1092 - 1107.
[7] Duan, C. J., Chen, L. Y., and Wu, H. N., 2009, Development geological characteristics of the Lower Permian overlapping reservoirs in Daniudi Gas Field: Petroleum Geology and Experiment, 31(5), 495 - 499.
[8] Duncan, M. P., and Eisner, L., 2010, Reservoir characterization using surface microseismic monitoring: Geophysics, 75(5), 75A139 - 75A146.
[9] Frohne, K.-H., and Mercer, J. C., 1984, Fractured shale gas reservoir performance study- an offset well interference field test: Journal of Petroleum Technology, 36(2), 291 - 300.
[10] Grechka, V., Mazumdar, P., and Shapiro, S. A., 2010, Predicting permeability and gas production of hydraulic fractured tight sands from microseismic data: Geophysics, 75(1), B1 - B10.
[11] Hanssen, P., and Bussat, S., 2008, Pitfalls in the analysis of low frequency passive seismic data: First Break, 26(6), 111 - 119.
[12] Hart, B. S., 2006, Seismic expression of fracture-swarm sweet spots, Upper Cretaceous tight-gas reservoirs, San Juan Basin: AAPG Bulletin, 90(10), 1519 - 1534.
[13] Kiselevitch, V. L., Nikolaev, A. V., Troitskiy, P. A., et al., 1991, Emission tomography: Main ideas, results, and prospects: 61st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1602 - 1602.
[14] Lakings, J. D., Duncan, P. M., Neale, C., et al., 2006, Surface based microseismic monitoring of a hydraulic fracture well stimulation in the Barnett Shale: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 605 - 608.
[15] Lin, C. M., Zhang, X., Zhou, J., et al., 2011, Diagenesis characteristics of the reservoir sandstones in Lower Shihezi Formation from Daniudi Gas Field, Ordos Basin: Advances in Earth Science, 26(2), 212 - 223.
[16] Maxwell, S., 2010, Microseismic: Growth born from success: The Leading Edge, 29(3), 338 - 343.
[17] Maxwell, S., Rutledge, J., Jones, R., et al., 2010, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75(5), 75A129 - 75A137.
[18] Maxwell, S., Cho, D., and Nortan, M., 2011, Integration of surface seismic and microseismic Part 2: Understanding hydraulic fracture variability through geomechanical integration: CSEG Recorder, 36(2), 27 - 30.
[19] Nelson, R., 2001, Geologic analysis of naturally fractured reservoirs: Elsevier, 125 - 162.
[20] Nortan, M., Cho, D., and Maxwell, S., 2011, Integration of surface seismic and microseismic for the characterization of a shale gas reservoir: CSEG Recorder, 36(1), 31 - 33.
[21] Refunjol, X. E., Marfurt, K. J., and Calvez, J. L., 2011, Inversion and attribute-assisted hydraulically induced microseismic fracture characterization in the North Texas Barnett Shale: The Leading Edge, 30(3), 292 - 299.
[22] Refunjol, X. E., Marfurt, Keranen, K. M., and Calvez, J. L., et al., 2012, Integration of hydraulic induced microseismic event locations with active seismic attributes: A North Texas Barnett Shale case study: Geophysics, 77(3), KS1 - KS12.
[23] Ringrose, P., Atbi, M., Mason, D., et al., 2009, Plume development around well KB-502 at the In Salah CO2 storage site: First Break, 27(1), 85 - 89.
[24] Rutledge, J. T., and Phillips, W. S., 2003, Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, East Texas: Geophysics, 68(2), 441 - 452.
[25] Shemeta, J., and Anderson, P., 2010, It’s a matter of size: Magnitude and moment estimates for microseismic data: The Leading Edge, 29(3), 296 - 302.
[26] Shen, C., Liang, B. Y., and Li, Z. T., 2009, Principle of vector scanning technique for micro-fractures: Acta Petrolei Sinica, 30(5), 744 - 748.
[27] Sheriff, R. E. 1991, Encyclopedic dictionary of exploration geophysics, 3rd Edition: SEG Geophysical References Series No.12, 264.
[28] Shi, J., 2009, Application of ant tracking technology in small fault interpretation: Journal of Oil and Gas Technology, 31(20), 257 - 258.
[29] Song, W. Q., Chen, Z. D., and Mao, Z. H., 2008, Hydro-fracturing break microseismic monitoring technology: China University of Petroleum Press, China, 1 - 3.
[30] Vaidya, V., 2009, Low frequency seismic- A new tool for exploration and development: Drilling and Exploration World, 19(2), 33 - 37.
[31] Yenugu, M., and Marfurt, K. J., 2011, Relation between seismic curvatures and fractures identified from image logs - application to the Mississipian reservoirs of Oklahoma, USA: 81st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 995 - 998.
[32] Zhang, X., 2010, Application of ant tracing algorithm in fault automatic interpretation: a case study on Fangheting structure in Pinghu Oilfield: Oil Geophysical Prospecting, 45(2), 278 - 281.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[3] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[4] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[5] 缪华祥, 姜福兴, 宋雪娟, 杨淑华, 焦俊如. 基于层析成像的矿山微震震源函数和震源参数反演[J]. 应用地球物理, 2012, 9(3): 341-348.
[6] 缪华祥, 姜福兴, 宋雪娟, 宋建勇, 杨淑华, 焦俊如. 矿山微地震全波自动定位的层析成像方法[J]. 应用地球物理, 2012, 9(2): 168-176.
[7] 石战结, 田钢, 王帮兵, 陈树民. 叠前三维地震近地表吸收补偿技术在大庆油田的应用研究[J]. 应用地球物理, 2009, 6(2): 184-191.
[8] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 0, (): 367-381.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司