APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 341-348    DOI: 10.1007/s11770-012-0347-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于层析成像的矿山微震震源函数和震源参数反演
缪华祥1,姜福兴1,宋雪娟2,杨淑华1,焦俊如3
1. 北京科技大学,北京100083
2.中国石油勘探开发研究院,北京 100083
3. Repsol USA 77380
Tomographic inversion for microseismic source parameters in mining
Miao Hua-Xiang1, Jiang Fu-Xing1, Song Xue-Juan2, Yang Shu-Hua1, and Jiao Jun-Ru3
1. University of Science and Technology, Beijing 100083 China.
2. Research Institute of Petroleum Exploration and Development, Beijing 100083 China.
3. Repsol USA, The Woodlands, Texas 77380 USA.
 全文: PDF (905 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了一种矿山微地震震源函数反演的新方法。对时空域中的微地震观测信号进行层析成像投影到慢度时间域,可以获得一个与震源有关的慢度时间信号。通过分析这一慢度时间信号与震源函数之间的关系,推导出了计算矿山微地震震源函数的层析成像公式和利用震源函数计算微地震有效辐射能量的公式。进一步利用最小二乘法,将震源函数的振幅谱拟合成ω-2模型震源谱,确定了微地震波的零频极限值和拐角频率,以此可以计算出该微震事件的震源破裂半径。利用这一方法对理论模型数据和实际资料处理,结果表明:本方法具有求出任意一个地震事件的震源函数、频率特征值和震源破裂半径等震源参数的优点。本方法是一种实时快速计算方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
缪华祥
姜福兴
宋雪娟
杨淑华
焦俊如
关键词层析成像   微地震   震源函数   震源谱   震源参数     
Abstract: We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the ω-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient.
Key wordsTomographic image   microseismic event   source function   source spectrum   the time-slowness domain   
收稿日期: 2012-04-26;
基金资助:

该项目由国家自然科学基金 (51174016) 和国家重点基础研究发展计划(973) (2010CB226803) 资助。

引用本文:   
缪华祥,姜福兴,宋雪娟等. 基于层析成像的矿山微震震源函数和震源参数反演[J]. 应用地球物理, 2012, 9(3): 341-348.
MIAO Hua-Xiang,JIANG Fu-Xing,SONG Xue-Juan et al. Tomographic inversion for microseismic source parameters in mining[J]. APPLIED GEOPHYSICS, 2012, 9(3): 341-348.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative Seismology Theory and Methods Vol. II, Translated by Li, Q. Z., Seismological Press, China, 89 - 92
[2] Miao, H. X., Jiang, F. X., 2012, Automatically positioning microseismic sources in mining by stereo tomographic method using full wavefields, Applied Geophysics, Vol. 9, No.2,189 - 197
[3] Brune, J. N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquake: Geophys. Res, 75, 4997 - 5009.
[4] Shearer, P. M., 1999, Introduction to Seismology: Cambridge University Press, New York, 16.
[5] Brune, J. N., 1971, Correction: Geophys. Res., 76(20), 5002.
[6] Shi, J., Kim, W. Y., and Richards, P. G., 1998, The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States: Bull. Seism. Soc. Am., 88(2), 531 - 542.
[7] Chapman, C. H., 1981, Generalized Radon transforms and slant stacks: Geophys, J. R., Astr, Soc., 66(2), 445 - 453
[8] Chen, Y. T., and Wu, Z. L., 2000. Digital Seismology: Earthquake Press, Beijing, 151 - 153.
[9] Xia, A. G, and Zhao, C. P., 2004, The Application of the experiential green function method and the genetic algorithms in the earthquake focus spectrum study: Inland Earthquake, 18(2), 130 - 137
[10] Du, S. T., 2008, Seismic Wave Dynamics Theory and Methods: ChinaUniversity of Petroleum Press, 41 - 47.
[11] Zhang, Y. J, Qiao, H. Z, 2011, Study on Seismic Source Parameters in Zipingpu Reservoir Area: Northwestern Seismological Journal, 33(2), 117 - 122.
[12] Miao, H. X., Jiang, F. X., 2012, Automatically positioning microseismic sources in mining by stereo tomographic method using full wavefields, Applied Geophysics, Vol. 9, No.2,189 - 197
[13] Shearer, P. M., 1999, Introduction to Seismology: Cambridge University Press, New York, 16.
[14] Shi, J., Kim, W. Y., and Richards, P. G., 1998, The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States: Bull. Seism. Soc. Am., 88(2), 531 - 542.
[15] Xia, A. G, and Zhao, C. P., 2004, The Application of the experiential green function method and the genetic algorithms in the earthquake focus spectrum study: Inland Earthquake, 18(2), 130 - 137
[16] Zhang, Y. J, Qiao, H. Z, 2011, Study on Seismic Source Parameters in Zipingpu Reservoir Area: Northwestern Seismological Journal, 33(2), 117 - 122.
[1] 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释[J]. 应用地球物理, 2018, 15(1): 125-136.
[2] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[3] 徐冬, 胡祥云, 单春玲, 李睿恒. 西南山区典型滑坡体时移电阻率动态监测试验研究[J]. 应用地球物理, 2016, 13(1): 1-12.
[4] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[5] 王志. Vp和Vp/Vs联合反演:在日本东北地区深部结构成像[J]. 应用地球物理, 2014, 11(2): 119-127.
[6] 杨瑞召, 赵争光, 彭维军, 谷育波, 王占刚, 庄熙勤. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用[J]. 应用地球物理, 2013, 10(2): 157-169.
[7] 黄光南, 刘洋. 变阻尼约束层析成像及其在VSP资料中的应用[J]. 应用地球物理, 2012, 9(2): 177-185.
[8] 缪华祥, 姜福兴, 宋雪娟, 宋建勇, 杨淑华, 焦俊如. 矿山微地震全波自动定位的层析成像方法[J]. 应用地球物理, 2012, 9(2): 168-176.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司