APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 739-750    DOI: 10.1007/s11770-024-1130-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
太阳能与地源热泵耦合供暖系统的匹配设计与优化
罗景辉*,黄昀锌,王景刚*,刘伟,王文红,韩子辰,张昌建
1. 河北工程大学能源与环境工程学院,中国 邯郸,056038;2. 河北省暖通空调技术创新中心 中国,邯郸,056038;3. 河北工程技术学院,中国 石家庄,050091;4. 河北省科学院能源研究所,中国 石家庄,050081
Capacity matching and optimization of solarground source heat pump coupling systems
Jing-hui Luo*, Yun-xin Huang, Jing-gang Wang*, Wei Liu, Wen-hong Wang, Zi-chen Han, Chang-jian Zhang
1. School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China. 2. Hebei HVAC Engineering Technology Innovation Center, Handan, 056038, China. 3. Hebei University of Engineering Science, Shijiazhuang, 050091, China. 4. Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang Hebei 050081, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地源热泵系统在北方农村供暖应用中展现出显著潜力,但其效能常受复杂地质条件制约。例如在某些区域,埋管式换热器的安装可能较为复杂,且这些管道未必能始终作为系统热泵的高效低温热源。针对该问题,本研究探索利用太阳能集热设备对埋管进行补充。该设计中,太阳能与地热能共同为热泵提供低温热源。首先,基于TRNSYS构建了太阳能-地源热泵耦合系统的仿真模型,并通过不同系统配置的实验与模拟验证了模型准确性,包括变量参数:埋管数量、集热器面积及水箱容积的差异化组合。模拟分析了各组件耦合特性及其对系统性能的影响。结果表明系统运行参数在以下配置中保持稳定:3根埋管 (埋深20 m)、6 m2集热器面积与0.5 m3水箱容积;4根埋管 (埋深20 m)、3 m2集热器面积与0.5 m3水箱容积;以及5根埋管 (埋深20 m)。研究同时发现,3 m2太阳能集热器的集热能力相当于单根埋管的换热能力。此外,太阳能-地源热泵耦合系统的年累计能耗较传统地源热泵系统降低5.31%,表现出更优的节能特性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词太阳能地源热泵耦合系统   优化   TRNSYS    节能运行   匹配设计     
Abstract: Ground source heat pump systems demonstrate significant potential for northern rural heating applications; however, the effectiveness of these systems is often limited by challenging geological conditions. For instance, in certain regions, the installation of buried pipes for heat exchangers may be complicated, and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system. To address this issue, the current study explored the use of solar-energy-collecting equipment to supplement buried pipes. In this design, both solar energy and geothermal energy provide low-temperature heat to the heat pump. First, a simulation model of a solar?ground source heat pump coupling system was established using TRNSYS. The accuracy of this model was validated through experiments and simulations on various system configurations, including varying numbers of buried pipes, different areas of solar collectors, and varying volumes of water tanks. The simulations examined the coupling characteristics of these components and their influence on system performance. The results revealed that the operating parameters of the system remained consistent across the following configurations: three buried pipes, burial depth of 20 m, collector area of 6 m2,and water tank volume of 0.5 m3; four buried pipes, burial depth of 20 m, collector area of 3 m2, and water tank volume of 0.5 m3; and five buried pipes with a burial depth of 20 m. Furthermore, the heat collection capacity of the solar collectors spanning an area of 3 m2 was found to be equivalent to that of one buried pipe.Moreover, the findings revealed that the solar?ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system, presenting a reduction of 5.31% compared to the energy consumption of the latter.
Key wordssolar?ground source heat pump coupling system   optimization   TRNSYS   energy-saving operation   matching design   
收稿日期: 2024-06-24;
基金资助:This work was supported by 2024 Central Guidance Local Science and Technology Development Fund Project "Study on the mechanism and evaluation method of thermal pollution in water bodies, as well as research on thermal carrying capacity".(Grant 246Z4506G), and Key Research and Development Project in Hebei Province: "Key Technologies and Equipment Research and Demonstration of Multiple Energy Complementary (Electricity, Heat, Cold System) for Solar Energy, Geothermal Energy, and Phase Change Energy" (Grant 236Z4310G), and the Hebei Academy of Sciences Key Research and Development Program "Research on Heat Transfer Mechanisms and Effi cient Applications of Intermediate and Deep Geothermal Energy" (22702).
通讯作者: Jing-hui Luo(Email:luojinghui@hebeu.edu.cn),Jing-gang Wang(Email:jinggangwang@hebeu.edu.cn).     E-mail: luojinghui@hebeu.edu.cn;jinggangwang@hebeu.edu.cn
作者简介: Luo Jinghui graduated from Hebei University of Engineering with a Bachelor's degree in Building Environment and Equipment Engineering from Hebei University of Engineering in 2011 and a Master's degreein Heating , Gas Suppl y,Ventilation, and Air Conditioning Engineering in 2014. He is currently a lecturer and the director of the Air Conditioning and Refrigeration Department at the School of Energy and Environmental Engineering, Hebei University of Engineering and is pursuing his Ph.D. His research areas include geothermal energy development and utilization, low-grade heat recovery, and heat pump theory and applications.
引用本文:   
. 太阳能与地源热泵耦合供暖系统的匹配设计与优化[J]. 应用地球物理, 2025, 22(3): 739-750.
. Capacity matching and optimization of solarground source heat pump coupling systems[J]. APPLIED GEOPHYSICS, 2025, 22(3): 739-750.
 
没有本文参考文献
[1] 李智,岳航羽*,马德锡,付宇,倪京阳,皮进军. 基于鱼鹰优化算法的瑞雷波频散曲线反演[J]. 应用地球物理, 2025, 22(3): 804-819.
[2] 王婧羽,范娜*,陈雪菲,钟守睿,李博煜,李丹,赵刚. 优化的Laplace-Fourier域二维声波方程有限差分正演模拟方法[J]. 应用地球物理, 2025, 22(1): 119-131.
[3] 袁焕,袁三一*,苏勤,王洪求,曾华会,岳世俊. 基于粒子群优化算法的多井子波同步反演方法[J]. 应用地球物理, 2024, 21(4): 728-739.
[4] 刘伟建,肖扬*,王浩楠,侯梦杰,田光辉,董森森. 微震非线性优化定位方法研究与应用[J]. 应用地球物理, 2024, 21(2): 331-342.
[5] 雷洋,刘璐,白文磊,冯海新,王之洋*. 基于自适应VMD算法的高速铁路地震信号分析[J]. 应用地球物理, 2024, 21(2): 358-371.
[6] 朱孟权, 王之洋*,刘洪 , 李幼铭,Yu Du-li. 基于随机增强量子粒子群算法的弹性波数值模拟[J]. 应用地球物理, 2024, 21(1): 80-92.
[7] 荆磊,姚长利,杨亚斌,徐梦龙,张光之,纪若野. 三维重力快速反演的优化算法*[J]. 应用地球物理, 2019, 16(4): 514-525.
[8] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[9] 阎守国,谢馥励,李长征,张碧星. 含有孔隙层的地表分层模型中瑞利波频散特性研究[J]. 应用地球物理, 2016, 13(2): 332-342.
[10] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[11] 熊杰, 张涛. 二维磁法数据多目标粒子群反演算法[J]. 应用地球物理, 2015, 12(2): 127-136.
[12] 冯周, 李心童, 武宏亮, 夏守姬, 刘英明. 基于元素俘获能谱测井的多矿物最优化处理方法[J]. 应用地球物理, 2014, 11(1): 41-49.
[13] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[14] 冯飞, 王德利, 朱恒, 程浩. 三维曲波变换L1范数约束稀疏反演一次波估计方法研究[J]. 应用地球物理, 2013, 10(2): 201-209.
[15] 刘杏芳, 郑晓东, 徐光成, 王玲, 杨昊. 基于LLE方法的地震属性特征提取技术及其应用[J]. 应用地球物理, 2010, 7(4): 365-375.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司