APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 127-136    DOI: 10.1007/s11770-015-0486-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
二维磁法数据多目标粒子群反演算法
熊杰1,2,张涛2
1. 长江大学电子信息学院,湖北,荆州 434023
2. 长江大学石油工业建模与计算技术研究所,湖北,荆州 434023
Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data
Xiong Jie1,2 and Zhang Tao2
1. School of Electronics and Information, Yangtze University, Jingzhou 434023, China.
2. Institute of Modeling and Computation Technology of Oil Industry, Yangtze University, Jingzhou 434023, China.
 全文: PDF (896 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 正则化反演通过引入模型约束和正则化因子求解病态的地球物理反演问题,但该方法存在正则化因子选取困难和初始模型依赖的问题。针对该问题,本文提出多目标粒子群反演算法。该算法反演中不需要目标函数梯度信息和正则化因子,先同时求数据拟合和模型约束的多目标反演解集,再权衡两者的相对重要程度,最后从反演解集中优选出最终反演结果,从而起到正则化因子的作用。以二维磁测数据反演为例,进行理论模型反演试验,试验结果表明,多目标粒子群反演算法能尽可能多地保留可行解,得到反演解集;通过分析反演解集,既能深入的理解反演过程,又能灵活地从数据拟合和模型约束两方面进行权衡与选择,得到比正则化反演更合理的反演结果;该算法能同时解决正则化因子选取困难和初始模型依赖问题。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊杰
张涛
关键词多目标反演   粒子群优化   正则化因子   全局搜索   磁法数据     
Abstract: Regularization inversion uses constraints and a regularization factor to solve ill-posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.
Key wordsmultiobjective inversion   particle swarm optimization   regularization factor   global search   magnetic data   
收稿日期: 2015-03-07;
基金资助:

本研究由国家自然科学基金(编号:61273179)和湖北省教育厅科学技术研究项目(编号:D20131206和编号:20141304)联合资助。

引用本文:   
熊杰,张涛. 二维磁法数据多目标粒子群反演算法[J]. 应用地球物理, 2015, 12(2): 127-136.
Xiong Jie,Zhang Tao. Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data[J]. APPLIED GEOPHYSICS, 2015, 12(2): 127-136.
 
[1] Carlos, A. C. C., Gregorio, T. P., and Maximino, S. L., 2004, Handling multiple objectives with particle swarm optimization: IEEE trans on evolutionary computation, 8(3), 256−279.
[2] Gribenko, A., and Zhdanov, M. S., 2007, Rigorous 3D inversion of marine CSEM data based on the integral equation method: Geophysics, 72(2), WA73−WA84.
[3] Hansen, P. C., and O’Leary, D. P., 1993, The use of L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Numerical Analysis, 14(6), 1487−1530.
[4] Kennedy, J., and Eberhart, R., 1995, Particle swarm optimization: IEEE Int Conf on Neural Networks, Perth, Australia, 1942−1948.
[5] Li, D. Q., Wang, G. J., Di, Q. Y., Wang, M. Y., and Wang, R., 2008, The application of genetic algorithm to CSAMT inversion for minimum structure: Chinese Journal of Geophysics (in Chinese), 51(4), 1234−1245.
[6] Nabighian, M. N., Grauch V. J. S., Hansen R. O., LaFehr, T. R., Li, Y. Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33ND−61ND.
[7] Sen, M. K., and Stoffa, P. L., 2013, Global optimization methods in geophysical inversion: Cambridge University Press, UK.
[8] Shi, X. M., Xiao, M., Fan, J. K., Yang, G. S., and Zhang, X. H., 2009, The damped PSO algorithm and its application for magnetotelluric sounding data inversion: Chinse Journal of Geophysics (in Chinese), 52(4), 1114−1120.
[9] Song, W. Q., Gao, Y. K., and Zhu, H. W., 2013, The differential evolution inversion method based on Bayesian theory for micro-seismic data: Chinese journal of geophyics (in Chinese), 56(4), 1331−1339.
[10] Stocco, S., Godio, A., and Sambuelli, L., 2009. Modelling and compact inversion of magnetic data: A Matlab code: Computers & Geosciences, 35(10), 2111−2118.
[11] Telford, W. M., Gedart, L. P., and Sheriff, R. E., 1990, Applied Geophysics: Cambridge University Press, Cambridge, UK.
[12] Tikhonov, A. N., 1963, Regularization of incorrectly posed problem: Soviet Mathematics Doklady, 4(6), 1624−1627
[13] Wang, Z. W., Xu, S., Liu, Y. P., and Liu, J. H., 2014, Extrapolated Tikhonov method and inversion of 3D density images of gravity data: Applied Geophysics, 11(2), 139−148.
[14] Wei, C., Li, X. F., and Zhen, X. D., 2010, The group search-based parallel algorithm for the serial Monte Carlo inversion method: Applied Geophysics, 7(2), 127−134.
[15] Wierzbicki, A. P., and Qian, Y., 1982, Introduce to the methodology of multi objective optimization, Chinese Journal of Operations Research (in Chinese), 1(1), 47−52.
[16] Wu, X. P., and Xu, G. M., 1998, Improvement of Occam’s inversion for MT Data: Acta Geophysica Sinica, 41(4), 547−554.
[17] Wu, X. P., and Xu, G. M., 2000, Study on 3-D resistivity inversion using conjugate gradient method: Chinese Journal of Geophysics (in Chinese), 43(3), 420−427.
[18] Xiang, Y., Yu, P., Chen, X., and Tang, R., 2013, An improved adaptive regularized parameter selection in Magnetotelluric inversion: Journal of Tongji Universityv (Natural Science) (in Chinese), 41(9), 1429−1434.
[19] Xiong, J., Meng, X. H., Liu, C. Y., and Peng, M., 2012, Magnetotelluric inversion based on differential evolution: Geophysical and Geochemical Exploration (in Chinese), 36(3), 448−451.
[20] Xiong, J., Liu, C. Y., and Zou, C. C., 2013, The induction logging inversion based on particle swarm optimization: Geophysical and Geochemical Exploration (in Chinese), (in Chinese), 37(6), 1141−1145.
[21] Yu, P., Wang, J. L., Wu, J. S., and Wang, D. W., 2007, Constrained joint inversion of gravity and seismic data using the simulated annealing algorithm: Chinese Journal of Geophysics (in Chinese), 50(2), 529−538.
[22] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166−174.
[23] Zhang, H. B., Shang, Z. P., Yang, C. C., and Duan, Q. L., 2005, Estimation of regular parameters for the impedance inversion: Chinese Journal of Geophysics (in Chinese), 48(1), 181−188.
[24] Zhdanov, M. S., 2002, Geophysical Inverse Theory and Regularization problems, volume 36 (Methods in Geochemistry and Geophysics): Elsevier Science.
[25] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925−937.
[1] 袁三一, 王尚旭, 田楠. 地球物理资料群体智能反演[J]. 应用地球物理, 2009, 6(2): 166-174.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司