APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 409-420    DOI: 10.1007/s11770-015-0496-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维声波方程优化有限差分正演
蔡晓慧1,2,刘洋1,2,任志明1,2,王建民3,陈志德3,陈可洋3,王成3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 大庆油田有限责任公司勘探开发研究院
Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme
Cai Xiao-Hui1,2, Liu Yang1,2, Ren Zhi-Ming1,2, Wang Jian-Min3, Chen Zhi-De3, Chen Ke-Yang3, and Wang Cheng3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Exploration and Development Research Institute of Daqing Oilfield Company Limited, Daqing 163712, China.
 全文: PDF (1152 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统上,有限差分的差分系数一般可以通过泰勒级数展开法或优化方法来极小化频散误差得到。基于泰勒级数展开的差分法在有限的波数范围内精度较高,但在这个范围之外会产生较强的数值频散;基于最小二乘的优化有限差分法能在更大的波数范围内达到较高的精度,并可以在较小的计算需求内获得全局最优解。本文将基于最小二乘的优化有限差分法从二维正演模拟推广到三维,形成了计算效率高、高精度范围宽、适合并行计算的三维声波优化有限差分方法。频散分析及正演模拟表明本文发展的有限差分方法可以很好地压制数值频散。最后,将本文发展的有限差分方法应用到三维逆时偏移的震源波场延拓和检波点波场延拓中,并结合有效边界存储策略与checkpointing技术在GPU集群上实现三维逆时偏移以提高计算效率、减少存储量。三维逆时偏移试算结果表明本文三维优化有限差分方法与传统的有限差分法相比可以获得更高精度的偏移成像结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡晓慧
刘洋
任志明
王建民
陈志德
陈可洋
王成
关键词三维声波方程   优化有限差分   正演   逆时偏移     
Abstract: Generally,  FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
Key words3D acoustic wave equation,   optimal finite-difference   forward modeling   reverse-time migration   
收稿日期: 2015-02-01;
基金资助:

本研究由国家自然科学基金项目(编号:41474110)和壳牌地球物理优秀博士生奖学金资助。

引用本文:   
蔡晓慧,刘洋,任志明等. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
Cai Xiao-Hui,Liu Yang,Ren Zhi-Ming et al. Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme[J]. APPLIED GEOPHYSICS, 2015, 12(3): 409-420.
 
[1] Aoi, S., and Fujiwara, H., 1999, 3-D finite-difference method using discontinuous grids: Bulletin of the Seismological Society of America, 89, 918-930.
[2] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration: Geophysics, 48(11), 1514-1524.
[3] Chang, S., and Liu, Y., 2013, A truncated implicit high-order finite-difference scheme combined with boundary conditions, Applied geophysics, 10(1), 53-62.
[4] Chang, W., and McMechan, G. A., 1990, 3D acoustic prestack reverse-time migration: Geophysical Prospecting, 38(7), 737-756.
[5] Chang, W., and McMechan, G. A., 1993, 3D prestack migration in anisotropic media: Geophysics, 58(1), 79-90.
[6] Chang, W., and McMechan, G. A., 1994, 3D elastic prestack reverse-time depth migration: Geophysics, 59(4), 597-609.
[7] Chen, J., 2012, An average-derivative optimal scheme for frequency-domain scalar wave equation: Geophysics, 77, T201-T210.
[8] Claerbout, J. F., 1985, Imaging the Earth’s Interior: Blackwell Scientific Publications Inc., Palo Alto, CA.
[9] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51, 54-66.
[10] Di Bartolo, L., Dors, C. and Mansur, W. J., 2012, A new family of finite-difference schemes to solve the heterogeneous acoustic wave equation: Geophysics, 77, T187-T199.
[11] Etgen, J. T., and O’Brien, M. J., 2007, Computational methods for large-scale 3D acoustic finite-difference modeling: a tutorial: Geophysics, 72, SM223-SM230.
[12] Fei, T., and Liner, C. L., 2008, Hybrid Fourier finite difference 3D depth migration for anisotropic media: Geophysics, 73, S27-S34.
[13] Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences: Bulletin of the Seismological Society of America, 86, 1091-1106.
[14] Kelly, K. R., Ward, R., Treitel, W. S., and Alford, R. M., 1976, Synthetic seismograms: a finite-difference approach: Geophysics, 41, 2-27.
[15] Larner, K., and Beasley, C., 1987, Cascaded migrations-improving the accuracy of finite-difference migration: Geophysics, 52, 618-643.
[16] Li, Z., 1991, Compensating finite-difference errors in 3-D migration and modeling: Geophysics, 56, 1650-1660.
[17] Liu, G., Liu, Y., Li, R., and Meng, X., 2013a, 3D seismic reverse time migration on GPGPU: Computers & Geosciences, 59, 17-23.
[18] Liu, S., Wang H., Chen, S., and Kong X., 2013b, Implementation strategy of 3D reverse time migration on GPU/CPU clusters: Chinese Journal of Geophysics, 56(10), 3487-3496.
[19] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-different method for the acoustic wave equation: Journal of Computational Physics, 228, 8779-8806.
[20] Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76, T79-T89.
[21] Liu, Y., and Sen, M. K., 2011b, 3D acoustic wave modeling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions: Exploration Geophysics, 42, 176-189.
[22] Liu,Y., 2013, Globally optimal finite-difference schemes based on least squares: Geophysics, 78, T113-T132.
[23] Liu, Y., 2014, Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling: Geophysical Journal International, 197, 1033-1047.
[24] Moczo, P., Kristek, J., and Halada, L., 2000, 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion: Bulletin of the Seismological Society of America, 90, 587-603.
[25] Pitarka, A., 1999, 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing: Bulletin of the Seismological Society of America, 89, 54-68.
[26] Robertsson, J. O. A., Blanch J. O., Symes W. W., and Burrus C. S., 1994a, Galerkin-wavelet modeling of wave propagation: Optimal finite difference stencil design: Mathematical and Computer Modeling, 19, 31-38.
[27] Robertsson, J. O. A., Blanch, J. O., and Symes, W. W., 1994b, Viscoelastic finite-difference modeling: Geophysics, 59, 1444-1456.
[28] Shragge, J., 2014, Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach: Geophsics, 79, T363-T378.
[29] Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophsics, 72, SM213-SM221.
[30] Takeuchi, N., and Geller, R. J., 2000, Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media: Physics of the Earth and Planetary Interiors, 119, 99-131.
[31] Tan, S., and Huang, L., 2014, An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation: Geophysical Journal International, 197, 1250-1267.
[32] Wang, B., Chen, J., and Chen W., 2012, Efficient boundary storage strategies for seismic reversetime migration: Chinese Journal of Geophysics (in Chinese), 55(7), 2412-2421.
[33] Ristow, D., and Ruhl, T., 1997, 3-D implicit finite-difference migration by multiway splitting: Geophysics, 62, 554-567.
[34] Wang, Y., Liang, W., Nashed, Z., Li, X., Liang, G., and Yang, C., 2014, Seismic modeling by optimizing regularized staggered-grid finite-difference operators using a time-space-domain dispersion-relationship-preserving method: Geophysics, 79, T277-T285.
[35] Yomogida, K. J., and Etgen, T., 1993, 3-D wave propagation in the Los Angeles basin for the Whittier-Narrows earthquake: Bulletin of the Seismological Society of America, 83, 1325-1344.
[36] Xu, S., Zhang, Y., and Tang, B., 2011, 3D angle gathers from reverse time migration: Geophysics, 76(2), S77-S92.
[37] Zhao, Y., Liu Y., and Ren Z., 2014, Viscoacoustic prestack reverse time migration based on the optimal time-space domain high-order finite-difference method: Applied Geophysics, 11(1), 50-62.
[38] Zhang, H., and Zhang Y., 2008, Reverse time migration in 3D heterogeneous TTI media: SEG Technical Program Expanded Abstrats, 2196-2200.
[39] Zhang, Y., and Sun, J., 2009, Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding: First Break, 26(1), 29-35.
[40] Zhang, J., and Yao, Z., 2013, Optimized finite-difference operator for broadband seismic wave modeling: Geophysics, 78, A13-A18.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[3] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[4] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[5] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[6] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[7] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[8] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[9] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[10] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[11] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[12] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[13] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司