APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 50-62    DOI: 10.1007/s11770-014-0414-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移
赵岩1,2,刘洋1,2,任志明1,2
1. 中国石油大学油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学CNPC物探重点实验室,北京 102249
Viscoacoustic prestack reverse time migration based on the optimal time–space domain high-order finite-difference method
Zhao Yan1,2, Liu Yang1,2, and Ren Zhi-Ming1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
 全文: PDF (987 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 叠前逆时偏移是对地下介质进行精确成像的方法之一。由于实际地下介质具有粘滞性,研究粘滞声波叠前逆时偏移具有一定的现实意义。逆时偏移的步骤之一是求解波动方程,对地震波场进行正向和反向外推,因此,精确、高效地求解波动方程对逆时偏移的成像效果和计算效率具有重要影响。本文中,我们利用基于优化时空域频散关系的高阶有限差分方法求解粘滞声波方程。频散分析和数值模拟的结果证明了优化时空域有限差分方法具有较高的精度,可以很好地压制数值频散。利用混合吸收边界条件处理边界反射,然后利用震源归一化互相关成像条件进行成像,并利用拉普拉斯滤波方法去除低频噪音。数值模型的测试结果显示,在考虑地下介质的粘滞性时,粘滞声波方程逆时偏移比声波方程逆时偏移具有更高的成像分辨率。另外,在进行波场外推的时候,采用自适应变长度的有限差分算子计算空间导数,在不影响求解精度的情况下,有效地提高了计算效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵岩
刘洋
任志明
关键词逆时偏移   粘滞声波   优化   自适应   时空域有限差分     
Abstract: Prestack reverse time migration (RTM) is an accurate imaging method of subsurface media. The viscoacoustic prestack RTM is of practical significance because it considers the viscosity of the subsurface media. One of the steps of RTM is solving the wave equation and extrapolating the wave field forward and backward; therefore, solving accurately and efficiently the wave equation affects the imaging results and the efficiency of RTM. In this study, we use the optimal time–space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis and numerical simulations show that the optimal time–space domain FD method is more accurate and suppresses the numerical dispersion. We use hybrid absorbing boundary conditions to handle the boundary reflection. We also use source-normalized cross-correlation imaging conditions for migration and apply Laplace filtering to remove the low-frequency noise. Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imaging resolution than the acoustic wave equation RTM when the viscosity of the subsurface is considered. In addition, for the wave field extrapolation, we use the adaptive variable-length FD operator to calculate the spatial derivatives and improve the computational efficiency without compromising the accuracy of the numerical solution.
Key wordsReverse time migration   Viscoacoustic   Optimization   Adaptive   Time–space domain finite-difference   
基金资助:

本研究由国家自然科学基金项目(编号:41074100)和教育部新世纪优秀人才支持计划(编号:NCET-10-0812)联合资助。

引用本文:   
赵岩,刘洋,任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
ZHAO Yan,LIU Yang,REN Zhi-Ming. Viscoacoustic prestack reverse time migration based on the optimal time–space domain high-order finite-difference method[J]. APPLIED GEOPHYSICS, 2014, 11(1): 50-62.
 
[1] Bickel, S. H., and Natarajan, R. R., 1985, Plane-wave Q deconvolution: Geophysics, 50(9), 1426 - 1439.
[2] Carcione, J. M., Kosloff, D., and Kosloff, R., 1988, Viscoacoustic wave propagation simulation in the earth: Geophysics, 53(6), 769 - 777.
[3] Cavalca, M., Fletcher, R., and Riedel, M., 2013, Q-compensation in complex media-Ray-based and wavefield extrapolation approaches: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 3831 - 3835.
[4] Chattopadhyay, S., and Mcmechan, G. A., 2008, Imaging conditions for prestack reverse time migration: Geophysics, 73(3), S81 - S89.
[5] Chen, J. B., 2012, An average-derivative optimal scheme for frequency-domain scalar wave equation: Geophysics, 77(6), T201 - T210.
[6] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics 51(1), 54 - 66.
[7] Fletcher, R. P., Nichols, D., and Cavalca, M., 2012, Wave path-consistent Effective Q Estimation for Q-compensated Reverse-time Migration: 74th EAGE Annual Meeting, Expanded Abstracts, A020.
[8] Fu, D. D., Liu, Y., Chen, Z. D., and Wang, S. Z., 1993, Acoustic wave modeling in viscoelastic media by pseudospectral method: Journal of Jianghan Petroleum Institute (in Chinese), 15(4), 32 - 39.
[9] Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical Research, 67(13), 5279 - 5291.
[10] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q ?ltering by Fourier transform: Geophysics, 56(4), 519 - 527.
[11] Kosloff, D., Pestana, R. C., and Tal-Ezer, H., 2010, Acoustic and elastic numerical wave simulations by recursive spatial derivative operators: Geophysics, 75(6), T167 - T174.
[12] Li, Q. Z., 1993, High-resolution seismic data processing: Petroleum Industry Press, China, 37 - 38.
[13] Liu, H. W., Liu H., and Zou, Z., 2010, The Problems of denoise and storage in seismic RTM: Chinese Journal of Geophysics, 53(9), 2171 - 2180.
[14] Liu, Y., 2013, Globally optimal finite-difference schemes based on least squares: Geophysics, 78(4), T113 - T132.
[15] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-different method for the acoustic wave equation: Journal of Computational Physics, 228, 8779 - 8806.
[16] Liu, Y., and Sen, M. K., 2010a, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75(3), A7 - A13.
[17] Liu, Y., and Sen, M. K., 2010b, A hybrid scheme for absorbing edge re?ections in numerical modeling of wave propagation: Geophysics, 75(2), A1 - A6.
[18] Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76(4), T79 - T89.
[19] Liu, Y., and Sen, M. K., 2011b, Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101(1), 141 - 159.
[20] Mittet, R., Sollie, R., and Hokstad, K., 1995, Prestack depth migration with compensation for absorption and dispersion: Geophysics, 60(5), 1485 - 1494.
[21] Robertsson, J. O. A., Blanch, J. O., Symes, W. W., and Burrus, C. S., 1994, Galerkin-wavelet modeling of wave propagation: Optimal finite difference stencil design: Mathematical and Computer Modelling, 19(1), 31 - 38
[22] Robinson, J. C., 1979, A technique for the continuous representation of dispersion in seismic data: Geophysics, 44(8), 1345 - 1351.
[23] Robinson, J. C., 1982, Time-variable dispersion processing through the use of phased sinc functions: Geophysics, 47(7), 1106 - 1110.
[24] Shan, G. J., 2009, Optimized implicit finite-difference and Fourier finite-difference migration for VTI media: Geophysics, 74(6), WCA189 - WCA197.
[25] Traynin, P., Liu, J., and Reilly, J., 2008, Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration: 78th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2412 - 2416.
[26] Wang, Y. H., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67(2), 657 - 663.
[27] Wang, Y. H., and Guo, J., 2004, Seismic migration with inverse Q filtering: Geophysical Research Letters, 31, L21608.
[28] Wang, Y. H., 2006, Inverse Q-?lter for seismic resolution enhancement: Geophysics, 71(3), V51 - V60.
[29] Wang, Y. H., 2008, Inverse-Q ?ltered migration: Geophysics, 73(1), S1 - S6.
[30] Xie, Y., Xin, K., Sun, J., and Notfors, C., 2009, 3D prestack depth migration with compensation for frequency dependent absorption and dispersion: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2919 - 2923.
[31] Yan, H. Y., and Liu, Y., 2013, Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61(5), 941 - 954.
[32] Zhang, C. H., and Ulrych, T. J., 2010, Refocusing migrated seismic images in absorptive media: Geophysics, 75(3), S103 - S110.
[33] Zhang, J. F., Wu, J. Z, and Li, X. Y., 2013, Compensation for absorption and dispersion in prestack migration: An effective Q approach: Geophysics, 78(1), S1 - S14.
[34] Zhang, J. H., and Yao, Z. X., 2012, Globally optimized finite-difference extrapolator for strongly VTI media: Geophysics, 77(4), T125 - T135.
[35] Zhang, Y., and Sun, J., 2009, Practical issues in RTM: true amplitude gathers, noise removal and harmonic-source encoding: First Break, 26(1), 29 - 35.
[36] Zhang, Y., Zhang, P., and Zhang, H. Z., 2010, Compensating for visco-acoustic effects in reverse-time migration: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3160 - 3164.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[7] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[8] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[9] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[10] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[11] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[12] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[13] 阎守国,谢馥励,李长征,张碧星. 含有孔隙层的地表分层模型中瑞利波频散特性研究[J]. 应用地球物理, 2016, 13(2): 332-342.
[14] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[15] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司