APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 332-342    DOI: 10.1007/s11770-016-0536-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
含有孔隙层的地表分层模型中瑞利波频散特性研究
阎守国1,谢馥励2,李长征3,张碧星1
1. 中国科学院声学研究所声场声信息国家重点实验室,北京 100090
2. 北京歌尔泰克科技有限公司,北京 100090
3. 黄河水利科学研究院,郑州 450003
Dispersion function of Rayleigh waves in porous layered half-space system
Yan Shou-Guo1, Xie Fu-Li2, Li Chang-Zheng3, and Zhang Bi-Xing1
1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
2. GoerTek Inc., Beijing 100190, China.
3. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 全文: PDF (796 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 瑞利波勘探主要是建立在弹性介质分层半空间模型基础上的。当实际地层中包含孔隙介质层时,需要将孔隙介质简化为弹性介质来进行分析和处理。这种简化处理究竟对瑞利波勘探造成怎样的影响是本文所研究的问题。本文基于弹性介质与孔隙介质共同构成的分层半空间模型,首先推导了分层半空间中两种介质处于不同相对位置时的瑞利波频散方程,解决了不同阶数矩阵之间的变量传递问题;然后,针对传递矩阵法在求解频散函数时可能出现的溢出问题,给出了一种可以有效提高计算范围的解决方案;同时,提出了一套新的数值算法用于复频散方程的快速求解。数值计算结果表明:当孔隙介质位于半空间表面时对低频瑞利波频散特性的影响最为显著,而在其它情况下对瑞利波频散特性的影响相对较小。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词分层介质   孔隙介质   瑞利波   矩阵优化     
Abstract: Rayleigh wave exploration is based on an elastic layered half-space model. If practical formations contain porous layers, these layers need to be simplified as an elastic medium. We studied the effects of this simplification on the results of Rayleigh wave exploration. Using a half-space model with coexisting porous and elastic layers, we derived the dispersion functions of Rayleigh waves in a porous layered half-space system with porous layers at different depths, and the problem of transferring variables to matrices of different orders is solved. To solve the significant digit overflow in the multiplication of transfer matrices, we propose a simple, effective method. Results suggest that dispersion curves differ in a low-frequency region when a porous layer is at the surface; otherwise, the difference is small.
Key wordslayered media   porous media   Rayleigh waves   matrix optimization   
收稿日期: 2015-09-25;
基金资助:

本研究由国家自然科学基金(编号:11174321、11174322和11574343)资助。

引用本文:   
. 含有孔隙层的地表分层模型中瑞利波频散特性研究[J]. 应用地球物理, 2016, 13(2): 332-342.
. Dispersion function of Rayleigh waves in porous layered half-space system[J]. APPLIED GEOPHYSICS, 2016, 13(2): 332-342.
 
[1] Abo-Zena, A., 1979, Dispersion function computations for unlimited frequency values: Geophys. J. R. Astr. Soc., 58(1), 91−105.
[2] Ben-Menahem, A., and Singh, S. J., 1968, Multipolar elastic fields in a layered half-space: Bull. Seism. Soc. Am., 58(5), 1519−1572.
[3] Chai, H. Y., Zhang, D. J., Lu, H. L., et al., 2015, Behavior of Rayleigh waves in layered saturated porous media using thin-layer method: Chinese Journal of Geotechnical Engineering, 37(6), 1132−1141.
[4] Lu, L. Y., and Zhang, B. X., 2006, Experimental analysis of multimode guided waves in stratified media: Applied Physics Letters, 88(1), 014101-014101-3.
[5] Luo, Y. H., Xia, J. H., and Liu, J. P., 2007, Joint inversion of high-frequency surface waves with fundamental and higher modes: J. of Applied Physics, 62(4), 375−384.
[6] Luo, Y. H., Xia, J. H., Miller R. D., et al., 2008, Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform: Pure appl. geophys., 165(2008), 903-922.
[7] Menke, W., 1979, Comment on ‘Dispersion function computation for unlimited frequency values’ by Anas Abo-Zena: Geophys. J. R. Astr. Soc., 59(2), 315−323.
[8] Nelder, J. A., and Mead, R., 1965, Simplex method for function minimization: Computer Journal, 7, 308−313.
[9] O’Neill, A., and Matsuoka, T., 2005, Dominant higher surface modes and possible inversion pitfalls: Journal of Environmental and Engineering Geophysics, 10(2), 185−201.
[10] Parra, J. O., and Xu, P. C., 1994, Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media: J. Acoust. Soc. Am., 95(1), 91−98.
[11] Tajuddin, M., and Ahmed, S., 1991, Dynamic interaction of a poroelastic layer and a half-space: J. Acoust. Soc. Am., 89(3), 1169−1175.
[12] Wu, X. Y., Li, Y. M., and Wang, K. X., 1993, Matrix algorithm and numerical calculation of seismic wave field in porous multilayer medium: Oil Geophysical Prospecting (in Chinese), 28(6), 694−704, 742.
[13] Xia, T. D., Yan, K. Z., and Sun M. Y., 2004, Propagation of Rayleigh wave in saturated soil layer: Journal of Hydraulic Engineering (in Chinese), (11), 1−5.
[14] Yaroslav, T.,andDavid, L. J., 2003, Capillary forces in the acoustics of patchy-saturated porous media: J. Acoust. Soc. Am.,114(5), 2596−2606.
[15] Zhang, B. X., Lu, L. Y., and Wang, C. H., 2004, Inversion of Rayleigh Wave in a Stratified Half Space: Chin. Phys. Lett., 21(4), 682−685.
[16] Zhang, B. X., Wei, X., Yu, M., et al., 1998, Study of energy distribution of guide waves in multi-layered media: J. Acoust. Soc. Am., 103(1), 125−135.
[17] Zhang, B. X., Yu, M., Lan, C. Q., et. al., 1996, Elastic wave and excitation mechanism of surface waves in multi-layered media: J. Acoust. Soc. Am., 100(6), 3527−3538.
[18] Zhang, Y., Xu, Y. X., Xia, J. H., et al., 2015, Characteristics and application of surface wave propagation in fluid-filled porous media: Chinese J. Geophys., 58(8), 2759−2778.
[19] Zhao, H. B., Chen, S. M., Li, L. L., et al., 2012, Influence of fluid saturation on Rayleigh wave propagation: Scientia Sinica (Physica Mechanica & Astronomica) (in Chinese), 42(2), 148−155.
[20] Zhou, T. F., Peng, G. X., Hu, T. Y., et al., 2014, Rayleigh wave nonlinear inversion based on the Firefly algorithm: Applied Geophysics, 11(2), 167−178.
[21] Zhou, X. M., and Xia, T. D., 2007, Characteristics of Rayleigh waves in half-space of partially saturated soil: Chinese Journal of Geotechnical Engineering, 29(5), 750-754.
[1] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[2] 张会星, 何兵寿. 部分饱和孔隙介质中的纵波方程及衰减特性研究[J]. 应用地球物理, 2015, 12(3): 401-408.
[3] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[4] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 7(1): 57-65.
[5] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 6(1): 57-65.
[6] 牛滨华, 孙春岩, 闫国英, 杨维, 刘畅. 含气介质临界点、流体和骨架弹性参数的线性数值计算方法[J]. 应用地球物理, 2009, 6(4): 319-326.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司