APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 408-421    DOI: 10.1007/s11770-024-1157-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于正交贴体网格的TI介质地震波数值模拟
刘志强*,李钢柱,黄磊,牛兴国,张晓萌,高成
(1. 内蒙古农业大学水利与土木建筑工程学院,内蒙古生态水文与水资源高效利用重点实验室,内蒙古呼和浩特市010018;2. 黄河流域内蒙古段水资源与水环境综合治理自治区协同创新中心,内蒙古呼和浩特市 010018;3. 内蒙古有色地质矿业(集团)物探勘查公司,内蒙古呼和浩特市010010;4. 内蒙古工业大学资源与环境工程学院,内蒙古呼和浩特市010010
Numerical simulation of seismic waves in transversely isotropic media based on orthogonal body-fitted grids
Liu Zhi-qiang,*, Li Gang-zhu, Huang Lei, Niu Xing-guo, Zhang Xiao-meng, Gao Cheng
1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Ecohydrology and High Effi cient Utilization of Water Resources, Hohhot 010018, China; 2. Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; 3. Inner Mongolia Nonferrous Geology and Mining (Group) Geophysical Exploration Co., Ltd., Hohhot 010010, China; 4. School of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010010, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规的有限差分地震波数值模拟采用笛卡尔坐标下的规则网格对计算区域进行网格剖分,在模拟起伏地表下的地震波场时,不仅不利于实现自由边界条件,而且由于阶梯状网格近似,在网格角点处容易产生虚假散射波,从而影响模拟精度。为此,将计算流体力学中的正交贴体网格生成技术引入到起伏地表下横向各向同性(TI)介质的网格剖分中,采用优化的同位网格有限差分法计算曲线坐标下的一阶速度-应力波动方程。正交贴体网格能够精确地描述起伏地表,网格的正交性也使得实施自由边界条件时无需做复杂的坐标转换和插值运算。数值算例表明:本文方法得到的数值解与谱元法的解基本吻合;对比本文方法和规则网格有限差分法模拟结果,在相同网格间距条件下,本文方法能够有效消除阶梯状网格引起的虚假散射波,从而提高数值模拟精度。此外,起伏地表三层介质模型模拟结果表明,本文方法对复杂模型同样有较强的适用性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词起伏地表   TI介质   虚假散射波   正交贴体网格   有限差分法     
Abstract: In conventional finite difference numerical simulation of seismic waves, regular grids in Cartesian coordinates are used to divide the calculated region. When simulating seismic wave fi elds under an irregular surface, such grids are unsuitable to realize the free boundary condition. They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids. These issues affect the simulation accuracy. This study introduces an orthogonal body-fitted grid generation technique in computational fluid dynamics for generating grids in transversely isotropic (TI) media under an irregular surface. The first–order velocity–stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method. The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering. The orthogonal body-fitted grids can accurately describe the irregular surface. Further, the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations. Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions. By comparing the simulation results of the proposed method with those of the regular grid difference method, the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing. Thus, the accuracy of the numerical simulation is improved. In addition, the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.
Key wordsirregular surface    TI media    false scattered wave    orthogonal body-fitted grids    finite difference method   
收稿日期: 2024-07-08;
通讯作者: 刘志强(Email: 490681597@qq.com ).     E-mail: 490681597@qq.com
作者简介: Liu Zhi-qiang, Lecturer, graduated from Jilin University with a PhD in Earth Exploration and Information Technology. He is currently a lecturer in the Water Conservancy and Civil Engineering in Inner Mongolia Agricultural University. His mian interests are theory and technique of forward and inversion of seismic wave fi eld and microtremor exploration.
引用本文:   
. 基于正交贴体网格的TI介质地震波数值模拟[J]. 应用地球物理, 2025, 22(2): 408-421.
. Numerical simulation of seismic waves in transversely isotropic media based on orthogonal body-fitted grids[J]. APPLIED GEOPHYSICS, 2025, 22(2): 408-421.
 
没有本文参考文献
[1] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[2] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[3] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[4] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[5] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[6] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[7] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[8] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[9] 安圣培, 胡天跃, 崔永福, 段文胜, 彭更新. 起伏地表条件下复杂路径初至自动拾取[J]. 应用地球物理, 2015, 12(1): 93-100.
[10] 黄建平, 曲英铭, 李庆洋, 李振春, 李国磊, 步长城. 基于时空双变网格的起伏地表变坐标系正演模拟方法[J]. 应用地球物理, 2015, 12(1): 101-110.
[11] 刘依谋, 梁向豪, 印兴耀, 周翼, 李彦鹏. 基于Walkaway VSP的Thomsen各向异性参数估计与应用[J]. 应用地球物理, 2014, 11(1): 23-30.
[12] 钱忠平, 张少华, 赵波, 雷娜, 李向阳. HTI介质中PP与PS波方位各向异性数值模拟与分析[J]. 应用地球物理, 2012, 9(4): 429-439.
[13] 兰海强, 张中杰. 起伏地表下流体填充裂缝的地震波场模拟[J]. 应用地球物理, 2012, 9(3): 301-312.
[14] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[15] 郝重涛, 姚陈, 张建中. 任意空间取向TI介质中长排列非双曲动校正公式优化[J]. 应用地球物理, 2010, 7(4): 336-347.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司