APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 154-164    DOI: 10.1007/s11770-017-0605-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
直流电阻率法三维正演的聚集代数多重网格算法研究
陈辉1,2,3,邓居智1,3,尹敏1,3,殷长春2,汤文武1,3
1. 东华理工大学放射性地质与勘探技术国防重点学科实验室,江西南昌 330013
2. 吉林大学地球探测科学与技术学院,吉林长春 130026
3. 东华理工大学地球物理与测控技术学院,江西南昌 330013
Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method
Chen Hui1,2,3, Deng Ju-Zhi1,3, Yin Min1,3, Yin Chang-Chun2, and Tang Wen-Wu1,3
1. Key Laboratory for Radioactive Geology and Exploration Technology, Fundamental Science for National Defense, East China University of Technology, Nanchang 330013, China.
2. Geo-Exploration Science and Technology Institute, Jilin University, Changchun 130026, China.
3. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China.
 全文: PDF (794 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为加快直流电阻率法三维正演模拟的计算速度,本文引入一种新型的代数多重网格算法—聚集代数多重网格算法(AGMG)。首先从直流电阻率法满足的电位二次场微分方程出发,采用七点有限差分格式进行离散,结合混合边界条件形成大型稀疏求解线性方程组;然后详细给出AGMG法聚集粗化的成对聚集算法及技术流程,并采用V循环AGMG预处理共轭梯度(CG)算法(AGMG-CG)求解线性方程组,最终实现直流电阻率三维正演模拟。通过典型地电模型数值模拟研究,并与成熟的直流电阻率三维正演模拟程序(3DDCXH)结果及解析结果对比验证了本文给出算法可行性和准确性。另外通过对不同剖分网格和不同模型的数值模拟,并与传统迭代算法(ILU-BCGSTAB、ILU-GCR、SSOR-CG)对比表明,AGMG-CG算法不论从迭代次数还是迭代时间上都有显著优势,同时具有近乎线性快速下降、迭代次数随网格大小增加而缓慢增加等优点。因此,本文算法具有收敛精度高、收敛快、迭代稳定等优点,为提高直流电阻率法三维正演模拟的计算效率提供了可能。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词聚集代数多重网格算法(AGMG)   直流电阻率法   三维正演   有限差分法     
Abstract: To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
Key wordsAGMG   DC resistivity method   3D modeling   finite difference method   
收稿日期: 2016-12-27;
基金资助:

本研究由国家自然科学基金(编号:41404057,41674077和411640034)和国家核能开发项目和赣鄱英才555工程项目联合资助。

引用本文:   
. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
 
[1] Aruliah, D. A., and Ascher, U. M., 2002, Multigrid preconditioning for krylov methods for time-harmonic maxwell’s equations in three dimensions: SIAM Journal on Scientific Computing, 24(2), 702−718.
[2] Commer, M., Maia, F. R., and Newman, G. A., 2011, Iterative Krylov solution methods for geophysical electromagnetic simulations on throughput-oriented processing units: International Journal of High Performance Computing Applications, 26(4), 378−385.
[3] Dahlin, T., 2001, The development of DC resistivity imaging techniques: Computers & Geosciences, 27(9), 1019−1029.
[4] Ellis, R., and Oldenburg, D., 1994, The pole-pole 3-D Dc-resistivity inverse problem: a conjugategradient approach: Geophysical Journal International, 119(1), 187−194.
[5] Günther, T., Rücker, C., and Spitzer, K., 2006, Three-dimensional modeling and inversion of DC resistivity data incorporating topography—II. Inversion: Geophysical Journal International, 166(2), 506−517.
[6] Lee, T., 1975, An integral equation and its solution for some two-and three-dimensional problems in resistivity and induced polarization: Geophysical Journal of the Royal Astronomical Society, 42(1), 81−95.
[7] Li, Y., and Oldenburg, D. W., 1994, Inversion of 3-D DC resistivity data using an approximate inverse mapping: Geophysical Journal International, 116(3), 527−537.
[8] Li, Y., and Oldenburg, D. W., 2000, 3-D inversion of induced polarization data: Geophysics, 65(6), 1931−1945.
[9] Li, Y., and Spitzer, K., 2002, Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions: Geophysical Journal International, 151(3), 924−934.
[10] Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95, 135−156.
[11] Lu, J., Wu, X., and Spitzer, K., 2010, Algebraic multigrid method for 3D DC resistivity modeling: Chinese Journal of Geophysics, 53(3), 700−707.
[12] Ma, Q., 2002, The boundary element method for 3-D dc resistivity modeling in layered earth: Geophysics, 67(2), 610−617.
[13] Mirgalikyzy, T., Mukanova, B., and Modin, I., 2015, Method of integral equations for the problem of electrical tomography in a medium with ground surface relief: Journal of Applied Mathematics, 2015, 1−10.
[14] Moucha, R., and Bailey, R. C., 2004, An accurate and robust multigrid algorithm for 2D forward resistivity modeling: Geophysical Prospecting, 52(3), 197−212.
[15] Mulder, W., 2008, Geophysical modelling of 3D electromagnetic diffusion with multigrid: Computing and Visualization in Science, 11(3), 129−138.
[16] Newman, G. A., 2013, A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data: Surveys in Geophysics, 35(1), 85−100.
[17] Notay, Y., 2010, An aggregation-based algebraic multigrid method: Electronic Transactions on Numerical Analysis, 37(6), 123−146.
[18] Notay, Y., 2012, Aggregation-based algebraic multigrid for convection-diffusion equations: Siam Journal on Scientific Computing, 34(4), A2288−A2316.
[19] Notay, Y., and Napov, A., 2015, A massively parallel solver for discrete Poisson-like problems: Journal of Computational Physics, 281, 237−250.
[20] Pan, K., and Tang, J., 2014, 2.5-D and 3-D DC resistivity modeling using an extrapolation cascadic multigrid method: Geophysical Journal International, 197(3), 1459−1470.
[21] Pidlisecky, A., Haber, E., and Knight, R., 2007, RESINVM3D: A 3D resistivity inversion package: Geophysics, 72(2), H1−H10.
[22] Pflaum, C., 2008, A multigrid conjugate gradient method: Applied Numerical Mathematics, 58(12), 1803−1817.
[23] Puzyrev, V., Koric, S., and Wilkin, S., 2016, Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems: Computers & Geosciences, 89, 79−87.
[24] Qiang, J. K., Shen, P., and Luo, Y. Z., 2007, The resistivity FEM numerical modeling on 3-D undulating topography: Chinese Journal of Geophysics, 50(5), 1378−1386.
[25] Ren, Z., and Tang, J., 2010, 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method: Geophysics, 75(1), H7−H17.
[26] Ren, Z., and Tang, J., 2014, A goal-oriented adaptive finite-element approach for multi-electrode resistivity system: Geophysical Journal International, 199(1), 136−145.
[27] Rücker, C., Günther, T., and Spitzer, K., 2006, Three-dimensional modeling and inversion of DC resistivity data incorporating topography—I. Modeling: Geophysical Journal International, 166(2), 495−505.
[28] Santarato, G., Ranieri, G., Occhi, M., Morelli, G., Fischanger, F., and Gualerzi, D., 2011, Three-dimensional Electrical Resistivity Tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils: Engineering Geology, 119(2), 18−30.
[29] Spitzer, K., 1995, A 3-D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods: Geophysical Journal International, 123(3), 903−914.
[30] Stüben, K., 2001, A review of algebraic multigrid: Journal of Computational and Applied Mathematics, 128(2), 281−309.
[31] Tang, J. T., Wang, F. Y., Ren, Z. Y., and Guo, R., W., 2010, 3-D direct current resistivity forward modeling by adaptive multigrid finite element method: Journal of Central South University of Technology, 17, 587−592.
[32] Trottenberg, U., and Clees, T., 2009, Multigrid software for industrial applications-from MG00 to SAMG: 100 Volumes of ‘Notes on Numerical Fluid Mechanics’, Springer, 423−436.
[33] Um, E. S., Commer, M., and Newman, G. A., 2013, Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth: finite-element frequency-domain approach: Geophysical Journal International, 193(3), 1460−1473.
[34] Vaněk, P., Mandel, J., and Brezina, M., 1996, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems: Computing, 56(3), 179−196,
[35] Wilson, J. D., and Naff, R. L., 2009, Multigrid preconditioned conjugate-gradient solver for mixed finite-element method: Computational Geosciences, 14(2), 289−299.
[36] Ye, Y., Hu X., and Xu, D., 2015, A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach, Journal of Earth Science: 26(6), 821−826.
[37] Zhang, Y. W., Yan, J. Y., Zhang, K., Zhang, Y. Q., and Shao, L. S., 2015, Review of distributed 3D DC/IP method: Progress in Geophysics, 30(4), 1959−1970.
[38] Zhao, S., and Yedlin, M. J., 1996, Some refinements on the finite-difference method for 3-D dc resistivity modeling: Geophysics, 61(5), 1301−1307.
[39] Zhou, B., and Greenhalgh, S. A., 2001, Finite element three-dimensional direct current resistivity modeling: accuracy and efficiency considerations: Geophysical Journal International, 145(3), 679−688.
[1] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[4] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[5] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司