APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 101-110    DOI: 10.1007/s11770-014-0476-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于时空双变网格的起伏地表变坐标系正演模拟方法
黄建平1,曲英铭1,李庆洋1,李振春1,李国磊2,步长城2
1. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580
2. 胜利油田分公司物探研究院,山东东营 257000
Variable-coordinate forward modeling of irregular surface based on dual-variable grid
Huang Jian-Ping1, Qu Ying-Ming1, Li Qing-Yang1, Li Zhen-Chun1, Li Guo-Lei2, Bu Chang-Cheng2, and Teng Hou-Hua2
1. Department of Geophysics, School of Geosciences, China University of Petroleum, Qingdao 266555, China.
2. Shengli Geophysical Research Institute of SINOPEC, Dongying 257022, China.
 全文: PDF (1160 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 坐标变换法通过将物理空间的曲网格映射为计算空间的矩形网格,将起伏地表转化为水平地表,同时将物理空间的波动方程转化为计算空间的波动方程,在计算空间完成数值模拟,坐标变换的方法对处理起伏自由边界具有较好的适应性和应用效果。本文在传统坐标变换方法的基础上,根据计算区域速度差异采用不同的网格大小和采样时间步长,提出了一种基于时空双变网格的起伏地表坐标变换正演模拟方法。在编程实现算法的基础上,通过典型模型波场模拟试算结果分析可知:(1)变网格方法与常规方法波场模拟误差在0.5%左右;(2)变网格方法计算效率视不同的变网格区域面积及变网格大小可提高几倍量级,在本文模型和计算参数下提高约5倍。(3)在满足模拟精度及频散条件要求下,变网格方法较全局细网格算法能显著节约计算内存。为此,针对起伏地表数值模拟,本文方法具有较高的模拟计算精度和一定的适应性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄建平
曲英铭
李庆洋
李振春
李国磊
步长城
关键词坐标变换   起伏地表   时空双变   自由边界   交错网格     
Abstract: The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.
Key wordsmapping   irregular surface   boundary   grid   forward modeling   
收稿日期: 2014-11-12;
基金资助:

本研究由国家973项目(编号:2014CB239006和2011CB202402)和国家自然科学基金(编号:41104069和41274124)联合资助。

引用本文:   
黄建平,曲英铭,李庆洋等. 基于时空双变网格的起伏地表变坐标系正演模拟方法[J]. 应用地球物理, 2015, 12(1): 101-110.
Huang Jian-Ping,Qu Ying-Ming,Li Qing-Yang et al. Variable-coordinate forward modeling of irregular surface based on dual-variable grid[J]. APPLIED GEOPHYSICS, 2015, 12(1): 101-110.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods: Bulletin of the Seismological Society of America, 58(1), 367-398.
[2] Chu, C. L., and Wang, X. T., 2005, Seismic modeling with a finite-difference method on irregular triangular grids: Periodical of Ocean University of China, 35(1), 43-48.
[3] Crase, E., 1990, High-order (space and time) finite-difference modeling of the elastic equation: 69th SEG Annual International Meeting, Expanded Abstracts, 987-991.
[4] Dong, C., and Dong, L. G., 2009, High-order finite-difference method in seismic wave simulation with variable grids and local time-steps: Chinese J. Geophys. (in Chinese), 52(1), 176-186.
[5] Dong, L. G., 2005, Numerical simulation of seismic wave propagation under complex near surface conditions: Progress in Exploration Geophysics, 28(3), 187-194.
[6] Fornberg, B., 1988a, Generation of finite difference formulas on arbitrary spaced grids: Mathematics of Computation, 51, 699-706.
[7] Fornberg, B., 1988b, The pseudospectral method: accurate representation of interfaces in elastic wave calculations, Geophysics, 53(5), 625-637.
[8] Falk, J., Tessmer, E., and Gajewski, D., 1996, Tube wave modeling by the finite-difference method with varying grid spacing: Prospecting, 148, 77-93.
[9] Falk, J., Tessmer, E., and Gajewski, D., 1998, Efficient finite-difference modelling of seismic waves using locally adjustable time steps: Geophysical Journal International, 46(6), 603-616.
[10] Hayashi, K., Burns, D. R., and Toksöz, M. N., 2001, Discontinuous-grid finite-difference seismic modeling including surface topography: Bull. Seism. Soc. Am, 91(6), 1750-1764.
[11] Hestholm, S. O., and Ruud, B. O., 1994, 2D finite-difference elastic wave modelling including surface topography: Geophysical Prospecting, 42(5), 371-390.
[12] Hestholm, S. O., and Ruud, B. O., 1998, 3D finite-difference elastic wave modelling including surface topography: Geophysics, 63(2), 613-622.
[13] Hestholm, S.O., and Ruud, B. O., 2000, 2D finite-difference viscoelastic wave modelling including surface topography: Geophysical Prospecting, 48(2), 341-373.
[14] Huang, Z. P., Zhang, M., Wu, W. Q., and Dong, L. G., 2004, A domain decomposition method for numerical simulation of the elastic wave propagation: Chinese J. Geophys. (in Chinese), 47(6), 1094-1100.
[15] Jastram, C., and Behle, A., 1992, Acoustic modeling on a vertically varying grid: Geophysical Prospecting, 40(2), 157-169.
[16] Jastram, C., and Tessmer, E., 1994, Elastic modeling on a grid with vertically varying spacing: Geophysical Prospecting, 42(4), 357-370.
[17] Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425-1436.
[18] Li, S. J., Sun, C. Y., and Ni, C. K., 2007, Acoustic equation numerical modeling on a grid of varying spacing: Chinese Journal of Engineering Geophysics, 4(3), 207-212.
[19] Li, Z. C., Zhang, H., and Zhang, H., 2008, Variable-grid high-order finite-difference numeric simulation of first-order elastic wave equation: Oil Geophysical Prospecting, 43(6), 711-716.
[20] Ma, D. T., and Zhu, G. M., 2004, Hybrid method combining finite difference and pseudospectral method for solving the elastic wave equation: Journal of Earth Sciences and Environment, 26(1), 61-64.
[21] Madariaga, R., 1976, Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am., 66(3), 639-666.
[22] Rao, D. Z., 1994, Wave equation numerical modeling of hexagonal sample by Fourier method: Chinese Journal of Computational Physics, 11(1), 101-106.
[23] Robertsson, J. O. A., and Holliger, K., 1996, Modeling of seismic wave propagation near the earth’s surface: Physics of the Earth and Planetary Interiors, 104, 193-211.
[24] Sun, C. Y., Li, S. J., and Ni, C. K., 2008, Wave equation numerical modeling by finite difference method with varying grid spacing: Geophysical Prospecting for Petroleum, 47(2), 123-128.
[25] Sun, W. T., Yang, H. Z., and Shu, J. W., 2004, Finite difference method of irregular grid for elastic wave equation in heterogeneous media: Chinese Journal of Computational Mechanics, 21(2), 135-141.
[26] Tessmer, E., Kosloff, D., and Behle, A., 1992, Elastic wave propagation simulation in the presence of surface topography: Geophysical Journal International, 108(2), 621-632.
[27] Tessmer, E., and Kosloff, D., 1994, 3D elastic modelling with surface topography by a Chebychev spectral method: Geophysics, 59(3), 464-473.
[28] Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290-1293.
[29] Thomas, Ch., Igel, H., Weber, M., and Scherbaum, F., 2000, Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf: Geophysical Journal International, 141(2), 307-320.
[30] Virieux, J., 1984, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 49(11), 1933-1957.
[31] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889-901.
[32] Wang, X. C., and Liu, X. W., 2005, Downward Continuing the Seismic record of topography using coordination transformated method: Progress in Geophysics, 20(3), 677-680.
[33] Zhang, H., and Li, Z. C., 2011, Seismic wave simulation method based on dual-variable grid: Chinese J. Geophys. (in Chinese), 54(1), 77-86.
[34] Zhang, J. F., 1998, Non-orthogonal grid finite-difference method for numerical simulation of elastic wave propagation: Chinese J. Geophys. (in Chinese), 41(S1), 357-366.
[35] Zhao, H. B., and Wang, X. M., 2007, An optimized variable staggered grid finite difference method and its application in crosswell acoustic wave: Chinese Science Bulletin (in Chinese), 52(12), 1387-1395.
[36] Zhao, J. X., Zhang, S. L., and Sun, P. Y., 2003, Pseudospectral method on curved grid for 2-D forward modeling: Geophysical Prospecting for Petroleum, 42(1), 1-5.
[37] Zhu, S. W., Qu, S. L., and Wei, X. C., 2007, Numeric simulation by grid-various finite-difference elastic wave equation: Oil Geophysical Prospecting, 42(6), 634-639.
[1] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[2] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[3] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[4] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[5] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[6] 安圣培, 胡天跃, 崔永福, 段文胜, 彭更新. 起伏地表条件下复杂路径初至自动拾取[J]. 应用地球物理, 2015, 12(1): 93-100.
[7] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[8] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[9] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[10] 兰海强, 张中杰. 起伏地表下流体填充裂缝的地震波场模拟[J]. 应用地球物理, 2012, 9(3): 301-312.
[11] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[12] 张敏, 李振春, 张华, 孙小东. 起伏地表无反射递推算法叠后逆时偏移[J]. 应用地球物理, 2010, 7(3): 239-248.
[13] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
[14] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 0, (): 420-431.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司