APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 608-613    DOI: 10.1007/s11770-016-0590-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
黏声VTI介质逆时偏移成像稳定性研究
孙小东1,2,葛中慧1,李振春1,洪瑛1
1. 中国石油大学(华东),青岛 266580;
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
The stability problem of reverse time migration for viscoacoustic VTI media
Sun Xiao-Dong1,2, Ge Zhong-Hui1, Li Zhen-Chun1, and Hong Ying1
1. China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (501 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 实际地层广泛存在各向异性和黏滞性,使得地震波波形发生改变,振幅能量降低,降低了成像的分辨率。为了进行深部储层高精度成像,本文基于GSLS模型黏声各向同性介质理论,将其扩展到各向异性介质中,给出了黏声垂直横向各向同性(VTI)介质声波拟微分方程组,采用伪谱法进行数值模拟。引入规则化算子消除高频不稳定问题,构建稳定的逆时传播算子,实现黏声VTI介质逆时偏移。该方法在成像过程中,考虑了各向异性和黏滞性的影响,具有更高的分辨率和振幅保真度,模型试算验证了方法的正确性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词粘声垂向各向同性   VTI介质   拟微分方程组   逆时传播算子   逆时偏移     
Abstract: In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the separated viscous and anisotropic reverse time migration (RTM) to a stable viscoacoustic anisotropic RTM for vertical transverse isotropic (VTI) media, based on single generalized standard and linear solid (GSLS) media theory.. We used a pseudo-spectral method to develop the numerical simulation. By introducing a regularization operator to eliminate the high-frequency instability problem, we built a stable inverse propagator and achieved viscoacoustic VTI media RTM. High-resolution imaging results were obtained after correcting for the effects of anisotropy and viscosity. Synthetic tests verify the validity and accuracy of algorithm.
Key wordsViscoacoustic vertical transverse isotropic   VTI medium   Pseudo-differential equations   Reverse-time propagator   Reverse-time migration   
收稿日期: 2016-03-05;
基金资助:

本研究由国家自然科学基金(编号:41274117)、国家自然科学基金(编号:41574098)和中国石化地球物理重点实验室基金(编号:wtyjy-wx2016-04-2)联合资助。

引用本文:   
. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
. The stability problem of reverse time migration for viscoacoustic VTI media[J]. APPLIED GEOPHYSICS, 2016, 13(4): 608-613.
 
[1] Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63(2), 623-631.
[2] Allan, A. M., Kanitpanyacharoen, W., and Vanorio, T., 2015, A multi-scale methodology for the analysis of velocity anisotropy in organic-rich shale: Geophysics, 80(4), C73-C88.
[3] Bai, T., andTsvankin, I.,2016,Time-domain finite-difference modeling for attenuative anisotropic media: Geophysics,81(2), C69−C77.
[4] Bai, J., Chen, G., and Yingst, D., 2013, Attenuation compensation in viscoacoustic reverse time migration: 83thAnnual In-ternat SEG Mtg, Expanded Abstracts, 3825−3830.
[5] Bickel, S. H., and Natarajan, R., 1985, Plane-wave Q deconvolution: Geophysics, 50(2), 1426-1439.
[6] Carcione, J. M., 1990, Wave propagation in anisotropic linear viscoelastic media: Theory and simulated wavefields: Geophysical Journal International, 101(3), 739−750.
[7] Cheng, J. B., andKang, W., 2016, Simulating propagation of separated wave modes in general anisotropic media, Part II: qS-wave propagators:Geophysics,81(2), C39−C52.
[8] Dai, N., and West, G. F., 1994, Inverse Q migration: 64th Annual In-ternatMtg, SEG, Expanded Abstracts of, 1418−1421.
[9] Deng, F., and McMechan, G. A., 2007, True-amplitude prestack depth migration: Geophysics, 72(3), S155-S166.
[10] Duveneck, E.,andBakker, P., 2011,Stable P-wave modeling for reverse-time migration in tilted TI media: Geophysics, 76(2), S65−S75.
[11] Fletcher, R. P., Nichols, D., and Cavalca, M., 2012, Wavepath-consistent effective Q estimation for Q compensated reserve-time migration: 74th Annual In-ternat EAGE Mtg, SEG, Expanded Abstracts, WCA179-WCA187.
[12] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56(4), 519-527.
[13] Li, T. C., Xie, Y. H., and Li, L., 2014, Visco-acoustic medium plane-wave finite-difference pre-stack depth migration and its application in Yinggehai Basin: Chinese J. Geophys. (in Chinese), 57(5), 1033−1045.
[14] Neil, D. H.,Andrew J. C., andKeith, H.,1987, A fast inverse Q, filter: SEG Technical Program, Expanded Abstracts, 252−254.
[15] Sun, W. B., Sun, Z. D., and Zhu, X. H., 2011, Amplitude preserved VSP reverse time migration for angle-domain CIGs extraction: Applied Geophysics, 8(2), 141−149.
[16] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[17] Traynin, P. J., and Reilly, J. M., 2008, Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration: 78th Annual InternatMtg, SEG,Abstracts, 45(5), 2412-2416.
[18] Xie, Y., Xin, K., Sun, J., and Notfors, C., 2009, 3D prestack depth migration with compensation frequency dependent absorption and dispersion: 79th Annual InternatMtg, SEG, Expanded Abstracts, 42(6), 2919-2922.
[19] Yan, H. Y., and Lu, Y., 2012, Rotated staggered grid high-order finite-difference numerical modeling for wave propagation in viscoelastic TTI media: Chinese J. Geophys (in Chinese), 55(4), 1354−1365.
[20] Zhang, L., and Zhang, H., 2010, Compensating for visco-acoustic effects in reverse-time migration: 80th Annual Internat. Mtg, SEG, Expanded Abstracts, 3160-3164.
[21] Zhao, Y., Liu, Y., and Ren, Z. M., 2014, Viscoacoustic prestack reverse time migration based on the optimal time-space domain high-order finite-difference method: Applied Geophysics, 11(1), 50−62.
[22] Zhu, T. Z., Harris, J. M., and Biondi, B., 2014, Q-compensated reverse-time migration: Geophysics, 73(9), S77-S87.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[5] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[6] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[7] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[8] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[9] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[10] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[11] 刘依谋, 梁向豪, 印兴耀, 周翼, 李彦鹏. 基于Walkaway VSP的Thomsen各向异性参数估计与应用[J]. 应用地球物理, 2014, 11(1): 23-30.
[12] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[13] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
[14] 芦俊, 王赟. Kelvin粘弹性VTI介质中地震波的传播[J]. 应用地球物理, 2010, 7(4): 357-364.
[15] 张敏, 李振春, 张华, 孙小东. 起伏地表无反射递推算法叠后逆时偏移[J]. 应用地球物理, 2010, 7(3): 239-248.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司