APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 684-697    DOI: 10.1007/s11770-025-1154-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于生成对抗网络的地震动模拟研究
陈凯,潘华*,张萌,李志恒
1. 中国地震局地球物理研究所,中国北京 100081 ;2. 重庆市地震,中国重庆 401147;3. 山东省地震,中国山东250014
Ground Motion Simulation Via Generative Adversarial Network
Kai Chen, Hua Pan,*, Meng Zhang, Zhi-Heng Li
1. Institute of Geophysics,China Earthquake Administration Beijing 100081, China 2. Chongqing Earthquake Agency Chongqing 401147, China 3. Shandong Earthquake Agency Jinan 250014, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震动时程是进行震前的地震风险评估和震后的灾害损失评估的前提,设定场景地震的强地面运动的估计对于工程应用十分重要。本文构建了一个基于生成对抗神经网络(GAN)的框架,用于模拟不同环境条件场景下的强地面运动,利用少量的实际记录就可以生成一组连续物理变量为条件的强地面运动。以山东平原地震为例,通过构建数据集,训练得到了可以捕获此次地震强震动记录内在概率分布的模型。模型以震源距为条件生成真实的三分量地震动时程,生成的地震动时程可以显示清晰的纵波、横波,展现出地震动记录的非平稳特性。通过对比反应谱、波形包络线以及峰值加速度等相关统计特征,合成记录与实际记录的结果较为一致,验证了GAN在少震地区构建情景地震的可能性,为完善区域地震动数据库和构建地震动预测模型的提供了新的思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震动模拟   机器学习   生成对抗网络   小波变换     
Abstract: This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes, a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations, particularly suited for regions with limited seismic data. Herein, we report a generative adversarial network (GAN) framework capable of simulating strong ground motions under various environmental conditions using only a small set of real earthquake records. The constructed GAN model generates ground motions based on continuous physical variables such as source distance, site conditions, and magnitude, effectively capturing the complexity and diversity of ground motions under different scenarios. This capability allows the proposed model to approximate real seismic data, making it applicable to a wide range of engineering purposes. Using the Shandong Pingyuan earthquake as an example, a specialized dataset was constructed based on regional real ground motion records. The response spectrum at target locations was obtained through inverse distance–weighted interpolation of actual response spectra, followed by continuous wavelet transform to derive the ground motion time histories at these locations. Through iterative parameter adjustments, the constructed GAN model learned the probability distribution of strong-motion data for this event. The trained model generated three-component ground-motion time histories with clear P-wave and S-wave characteristics, accurately reflecting the non-stationary nature of seismic records. Statistical comparisons between synthetic and real response spectra, waveform envelopes, and peak ground acceleration show a high degree of similarity, underscoring the eff ectiveness of the model in replicating both the statistical and physical characteristics of real ground motions. These findings validate the feasibility of GANs for generating realistic earthquake data in data-scarce regions, providing a reliable approach for enriching regional ground motion databases. Additionally, the results suggest that GAN-based networks are a powerful tool for building predictive models in seismic hazard analysis.
Key wordsGround motion simulation    Machine learning    Generative adversarial networks    Wavelet transform   
收稿日期: 2024-08-16;
基金资助:This work was Funded by the National Key Research and Development Program (2022YFC3003502).
通讯作者: 潘华(Email:panhua.mail@163.com)     E-mail: panhua.mail@163.com
作者简介: Chen Kai, a Senior Engineer at the Chongqing Earthquake Agency and a PhD student specializing in engineering seismology at the Institute of Geophysics, focuses on ground motion simulation and researching seismic activity.
引用本文:   
. 基于生成对抗网络的地震动模拟研究[J]. 应用地球物理, 2025, 22(3): 684-697.
. Ground Motion Simulation Via Generative Adversarial Network[J]. APPLIED GEOPHYSICS, 2025, 22(3): 684-697.
 
没有本文参考文献
[1] 程希*, 傅海成, 吐尔逊加孜-马哈巴特. 基于统一学习的分布式测井大数据私有云平台设计[J]. 应用地球物理, 2025, 22(2): 499-510.
[2] 郑海青,胡琳旎,孙晓云*,张雨,金申熠. 面向小样本场景的基于多源域迁移学习的边坡位移预测[J]. 应用地球物理, 2024, 21(3): 496-504.
[3] 邵广周, 独婷. 基于小波变换的瑞利波时频分析方法探测浅地表裂缝*[J]. 应用地球物理, 2020, 17(2): 233-242.
[4] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[5] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[6] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[7] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[8] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[9] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[10] 龙云, 韩立国, 韩利, 谭尘青. 小波域L1范数最优解匹配处理[J]. 应用地球物理, 2012, 9(4): 451-458.
[11] 张晓峰, 潘保芝, 王飞, 韩雪. 小波变换在裂缝识别和裂缝密度评价中的研究[J]. 应用地球物理, 2011, 8(2): 164-169.
[12] 王珺, 陈雨红, 许大华, 乔玉雷. 基于可靠地估计反射方位和边界的构造约束保边滤波[J]. 应用地球物理, 2009, 6(4): 337-346.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司