APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (4): 337-346    DOI: 10.1007/s11770-009-0038-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于可靠地估计反射方位和边界的构造约束保边滤波
王珺1,陈雨红2,许大华3,乔玉雷4
1. 中国石油大学信息与控制工程学院,山东东营 257061
2. 中国科学院兰州地质研究所,兰州 730000
3. 胜利测井公司,山东东营 257000
4. 胜利物探研究院,山东东营 257022
Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges
Wang Jun1, Chen Yuhong2, Xu Dahua3, and Qiao Yulei4
1. China University of Petroleum ,Dong Ying, 257061, China.
2. Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou,730000, China.
3. Shengli Well Logging Company, Dong Ying, 257000, China.
4. Shengli Geophysics Academy, Dong Ying,257000, China.
 全文: PDF (994 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文给出一种既能有效衰减地震噪音又可保护地层及构造的不连续性的新方法。构造约束保边平滑技术需要已知反射局部方位和边界信息,通常这些信息由全频率地震资料估算获得,但在资料信噪比很低的情况下,噪音往往会降低估算的可靠度。对于信噪比极低的地震资料,其主频成分相对非主频成分信噪比高,所以由主频资料获取的方位和边界信息比由其它频率成分获取的更可靠。方位和边界信息通常用倾角和相干值差异来描述。由于不同频率所引起的倾角和相干值差异的变化均比地震记录的变化缓慢,所以由主频资料获取的倾角及边界信息能够近似代表所有频率成分的倾角及边界信息。Ricker子波广泛用于地震勘探,Marr小波与Ricker子波在时间和频率域均具有相同的形态,所以选用Marr小波变换将地震数据按照倍频程分为几个分频体。扫描主频分频体,用不等权二次曲面拟合并求解极大值来获取视倾角,通过比较9个滑动窗口的相干值来确定反射边界。将这些信息用构造约束保边平滑技术可选择性地(selectively)对主频、低频、高频分频体做平滑处理,最后将平滑后的各频段地震记录合成为滤波去噪后的地震记录。理论模型和实际资料处理效果表明该方法能有效压制噪音,保护边界,保护同相轴的连续性,且灵活地保留地震记录中的有用信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王珺
陈雨红
许大华
乔玉雷
关键词反射方位   边界   主频   小波变换   构造约束保边滤波     
Abstract: In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.
Key wordsorientation   edge   dominant frequency   wavelet transform   structure-oriented edge-preserving smoothing   
收稿日期: 2009-09-16;
基金资助:

本研究由国石油天然气集团公司中青年创新基金(编号:07E1019);教育部高等教育博士点专项研究基金(编号:200804251502)和国家自然科学基金(编号:60873163)资助。

引用本文:   
王珺,陈雨红,许大华等. 基于可靠地估计反射方位和边界的构造约束保边滤波[J]. 应用地球物理, 2009, 6(4): 337-346.
WANG Jun,CHEN Yu-Hong,XU Da-Hua et al. Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges[J]. APPLIED GEOPHYSICS, 2009, 6(4): 337-346.
 
[1] AlBinHassan, N. M., Luo, Y., and Al-Faraj, M. N., 2006, 3D edge-preserving smoothing and applications: Geophysics, 71(4), 5 - 11.
[2] Al-Dossary, S., and Marfurt, K. J., 2004, Inter-azimuth coherence attribute for fracture detection: 74th Ann. Internat. Mtg., Eur. Assn. Expl. Geophys., Expanded Abstracts, 183 - 186.
[3] Al-Dossary, S., and Marfurt, K. J., 2006, 3D volumetric multispectral estimates of reflector curvature and rotation: Geophysics, 71(5), 41 - 51.
[4] Al-Dossary, S., and Marfurt, K. J., 2007, Lineament-preserving filtering: Geophysics, 72(1), 1 - 8.
[5] Bahorich, M. S., and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features, The coherence cube: The Leading Edge, 16(4), 1053 - 1058.
[6] Bakker,P., L. J. van Vliet, and P.W.Verbeek,1999, Edge-preserving orientation adaptive filtering: Proceedings of the IEEE-CS Conference on Computer Vision and Pattern Recognition, 535 - 540.
[7] Boncelet, C., R. Hardie, and G. Arce, 1991, LUM filters for smoothing and sharpening, in Dougherty, E. R., Arce, G. R., and C. G. Boncelet Jr, Eds., Nonlinear image processing II: Proceedings of SPIE, 1451, 70 - 73.
[8] Dalley, R. M., Gevers, E. E. A., Stampli, G. M., Davies, D. J., Gastaldi, C. N., Ruijetnberg, P.R., and Vermeer, G. J. D., 1989, Dip and azimuth displays for 3-D seismic interpretation: First Break, 7(1), 86 - 95.
[9] Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64(5), 1468 - 1479.
[10] Gulunay, N., Holden, J., and Connor, J., 2007, Coherency enhancement on 3D seismic data by dip detection and dip selection: 77th Ann. Internat. Mtg., Eur. Assn. Expl. Geophys., Expanded Abstracts, 2625 - 2629.
[11] Hocker, C., and Fehmers, G., 2002, Fast structure interpretation with structure-oriented filtering: The Leading Edge, 21(2), 238 - 243.
[12] Kuwahara, M., Hachimura, K., Eiho, S., and Kinoshita, M., 1976, Processing of RI-angiocardiographic images: in Preston, K., and Onoe, M., Eds., Digital processing of biomedical images, Plenum Press, (New York) 187 - 202.
[13] Lu, W., Li, Y., Zhang, S., Xiao, H., and Li, Y., 2005, Higher-order-statistics and supertrace-based coherence-estimation algorithm: Geophysics, 70(3), 13 - 18.
[14] Luo,Y., Marhoon, M., Al-Dossary, S., and M. Alfaraj, 2002, Edge-preserving smoothing and applications: The Leading Edge, 21(2), 136 -158.
[15] Luo, Y., Higgs, W. G., and Kowalik, W. S., 1996, Edge detection and stratigraphic analysis using 3D seismic data: 66th Annual International Meeting, SEG, Expanded Abstracts, 324 - 327.
[16] Ma, J., and Plonka, G., 2007, Combined curvelet shrinkage and nonlinear anisotropic diffusion: IEEE Transactions on Image Processing, 16, 2198 - 2206.
[17] Ma, J., 2007, Curvelets for surface characterization: Applied Physics Letters, 90, (054109).
[18] Marfurt, K J., and Kirlin, R. L., 2000, 3-D broad-band estimates of reflector dip and amplitude: Geophysics, 65(1), 304 - 320.
[19] Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth: Geophysics, 71(4), 29 - 40.
[20] Perez, G., and Marfurt, K. J., 2008, New azimuthal binning for improved delineation of faults and fractures: Geophysics, 73(1), S7 - S15.
[21] Perona, P., and Malik, J., 1990, Scale-space and edge detection using anisotropic diffusion: IEEE Transactions on Pattern analysis and Machine Intelligence, 12, 629 - 639.
[1] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[2] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[3] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[4] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[5] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[6] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[7] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[8] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[9] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[10] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[11] Asjad Amin and Mohamed Deriche. 三维多方向边缘探测技术识别盐丘的新方法[J]. 应用地球物理, 2015, 12(3): 334-342.
[12] 冯彦, 孙涵, 蒋勇. 基于数据拟合的区域地磁场建模研究[J]. 应用地球物理, 2015, 12(3): 303-316.
[13] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[14] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[15] 徐梦龙, 杨长保, 吴燕冈, 陈竞一, 郇恒飞. 利用各方向均方差相关系数进行位场边界检测[J]. 应用地球物理, 2015, 12(1): 23-34.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司