APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 499-510    DOI: 10.1007/s11770-025-1187-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于统一学习的分布式测井大数据私有云平台设计
程希*, 傅海成, 吐尔逊加孜-马哈巴特
1 . 西安石油大学 地球科学与工程学院,陕西 西安710065;2. 油气藏地质及开发工程国家重点实验室(西南石油大学),四川 成都 610500;3. 西安石油大学 院士专家工作站,陕西 西安 710065;4. 中国石油勘探开发研究院;5. 萨特巴耶夫大学库图里索夫地质与石油天然气企业研究所,阿拉木图 050013
Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data
Cheng Xi*, Fu Haicheng, Tursyngazy Mahabbat
1. College of Earth Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China 3. Academician Expert Workstation, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China; 4. Petrochina Research Institute of Petroleum Exploration and Development, Beijing 100083, China 5. Geology and Oil-gas Business Institute named after K. Turyssov of Satbayev University , Almaty, 050013, The Republic of Kazakhstan
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 测井技术经过四代技术发展,积累了大量历史数据,这构成了测井大数据和数字资产的基础。然而,这些数据的价值并没有得到很好的存储、管理和挖掘。随着机器学习和云计算技术的发展,这为测井大数据私有云提供了难得的发展机遇。同时,传统的岩石物理评价和解释模式对于新的评价对象遇到了巨大的挑战。在测井大数据私有云中集成测井大数据分布式存储、处理、学习等功能的解决方案尚未开展。建立以统一学习模型为中心的分布式测井大数据私有云平台,实现测井大数据的分布式存储和处理,并通过统一学习模型促进新知识的发现。即基于“井大数据云平台--统一测井学习模型--大函数空间--知识学习与发现--应用”的研究思路,从云平台的结构、生态、管理和安全等方面分析了构建基于物理和数据统一学习模型的测井大数据云平台的可行性,从统一学习模型、云平台架构、数据存储与学习算法、算力分配与平台监控,以及数据安全等方面的设计实现了测井大数据的并行分布式存储和处理。案例研究表明,测井大数据云平台与传统测井评价方法相比具有明显的技术优势。传统的评价方法相比,在知识发现方法、数据软件和结果共享、准确性速度和复杂性等方面具有明显的技术优势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词统一测井学习模型   测井大数据私有云   机器学习     
Abstract: Well logging technology has accumulated a large amount of historical data through four generations of technological development, which forms the basis of well logging big data and digital assets. However, the value of these data has not been well stored, managed and mined. With the development of cloud computing technology, it provides a rare development opportunity for logging big data private cloud. The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects. The solution research of logging big data distributed storage, processing and learning functions integrated in logging big data private cloud has not been carried out yet. To establish a distributed logging big - data private cloud platform centered on a unified learning model, which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unified logging learning model integrating physical simulation and data models in a large - scale functional space, thus resolving the geo - engineering evaluation problem of geothermal fi elds. Based on the research idea of “logging big data cloud platform---unified logging learning model---large function space---knowledge learning & discovery---application”, the theoretical foundation of unified learning model, cloud platform architecture, data storage and learning algorithm, arithmetic power allocation and platform monitoring, platform stability, data security, etc. have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure, ecology, management and security of the cloud platform. The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method, data software and results sharing, accuracy,speed and complexity.
Key wordsUnified logging learning model   logging big data private cloud   machine learning   
收稿日期: 2024-10-06;
基金资助:本研究由油气藏地质及开发工程国家重点实验室(西南石油大学)开放基金项目(PLN2022-14)资助。
通讯作者: 程希 (Email:chengx@xsyu.edu.cn ).     E-mail: chengx@xsyu.edu.cn
作者简介: 程希,副教授,工学博士,现任职于西安石油大学,致力于大数据挖掘与机器学习、人工智能与油气勘探开发交叉研究、人工智能测井(AIL)等方向的教学科研工作。
引用本文:   
. 基于统一学习的分布式测井大数据私有云平台设计[J]. 应用地球物理, 2025, 22(2): 499-510.
. Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data[J]. APPLIED GEOPHYSICS, 2025, 22(2): 499-510.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司