APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 327-333    DOI: 10.1007/s11770-015-0506-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
可变频震源混合采集数据波场分离研究
刘强1,韩立国1,陈竞一2,陈雪1,张显娜1
1. 吉林大学,地球探测科学与技术学院,长春 130026
2. 塔尔萨大学,工程与自然科学学院,奥克拉荷马 74104
Separation of inhomogeneous blended seismic data
Liu Qiang1, Han Li-Guo1, Chen Jing-Yi2, Chen Xue1, and Zhang Xian-Na1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. College of Engineering and Natural Science, University of Tulsa, Oklahoma 74104, America.
 全文: PDF (671 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规混合震源采集方法中混合震源包含的子震源激发频率相同,勘探中每个震源须产生相应满时频带的信号,但一般情况下需要相当高的工业水准以激发和操作宽频带震源。针对这一问题提出了可变频震源混合采集和分布式混合采集,混合震源中单震源间的频带和主频互不相同。但研究发现,当常规震源混合采集和可变频震源混合采集采用相同的观测系统和波场分离方法时,该新采集模式的分离信噪比比常规混合模式低。针对此问题,我们提出了适用于新采集模式的波场分离方法,该方法引入压缩小波变换对混合采集数据进行波场分离,不仅提高了分离信噪比,而且计算时间也是普通方法的1/3。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘强
韩立国
陈竞一
陈雪
张显娜
关键词可变频震源混合采集   压缩小波变换   波场分离     
Abstract: The frequencies of sources involved in conventional blended acquisition are the same. Each source transmits the full frequency band, and in general, significant effort is required to successfully produce and operate wideband sources. To solve this problem, inhomogeneous blended or decentralized blended acquisition is used, in which the dominant frequency and bandwidth of the source units in a blended array are not equal. When the inhomogeneous and conventional blending acquisitions adopt the same geometry and separation methods, the former has low signal-to-blending noise ratio. Therefore, we present a new separation method for such blended acquisition based on the synchrosqueezed wavelet transform. The proposed method offers better separation quality and decreases the computation time to approximately 1/3.
Key wordsInhomogeneous blended acquisition   synchrosqueezed wavelet transform   deblending   
收稿日期: 2015-04-04;
基金资助:

本研究由国家863计划重大项目课题资助(编号:2014AA06A605)和国家自然科学基金项目(编号:41374115)联合资助。

引用本文:   
刘强,韩立国,陈竞一等. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
Liu Qiang,Han Li-Guo,Chen Jing-Yi et al. Separation of inhomogeneous blended seismic data[J]. APPLIED GEOPHYSICS, 2015, 12(3): 327-333.
 
[1] Bagaini, C., 2010, Acquisition and processing of simultaneous vibroseis data: Geophysical Prospecting, 58, 81−99.
[2] Beasley, C. J., 2008, A new look at marine simultaneous sources: The Leading Edge, 27(7), 914-917.
[3] Berkhout, A. J., 2008, Changing the mindset in seismic data acquisition: The Leading Edge, 27(7), 924-938,
[4] Berkhout, A. J., Blacquière, G., and Verschuur, D. J., 2009, The concept of double blending: Combining incoherent shooting with incoherent sensing: Geophysics, 74(4), A59−A62.
[5] Berkhout, A. J., and Blacquière, G., 2011, Multi-bandwidth Blending, the Future of Seismic Acquisition?: 73rd EAGE Meeting, Extended Abstracts, H025.
[6] Berkhout, A. J., and Blacquière, G., 2012, Blended Acquisition with Optimized Dispersed Source Arrays: 74th EAGE Meeting, Extended Abstracts, A043.
[7] Berkhout, A. J., Blacquière, G., and Verschuur, D. J., 2012, Multiscattering illumination in blended acquisition: Geophysics, 77(2), 23−31.
[8] Berkhout, A. J., 2013, Decentralized Blended Acquisition - Are Networks the Next Big Step in Seismic Data Collection?: 75th EAGE Meeting, Extended Abstracts, Th08−Th06.
[9] Chen, Y., Fomel, S., and Hu, J., 2014, Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization: Geophysics, 79(5),V179−V189.
[10] Daubechies, I., 1992, Ten lectures on wavelets: SIAM, CBMS-NSF Regional Conference Series in Applied Mathematics.
[11] Daubechies, I., and Maes, S., 1996, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models: Wavelets in Medicine and Biology, 527-546.
[12] Daubechies, I., Lu, J. F., and Wu, H. T., 2011, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool: Applied and Computational Harmonic Analysis, 30, 243-261.
[13] Ellis, D., 2013, Simultaneous Source Acquisition - Achievements and challenges: 75th EAGE Meeting, Extend Abstracts, Th-08-01.
[14] Hampson, G., Stefani, J., Herkenhoff, F., et al., 2008, Acquisition using simultaneous sources: 78th Annual International Meeting, SEG, Expanded Abstracts, 2816−2820.
[15] Han, M., Han, L. G., Liu, C. C., et al., 2013, Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding: Applied Geophysics, 10(1), P. 41-52.
[16] Herrera, R. H., Han, J. J., and van der Baan, M., 2014, Application of the synchrosqueezing transform in seismic time-frequency analysis: Geophysics, 79(3), V55−V64.
[17] Huo, S., Luo, Y., and Kelamis, P. G., 2012, Simultaneous sources separation via multidirectional vector-median filtering: Geophysics, 77(4),V123-V131.
[18] Ibrahim, A., and Sacchi, M. D., 2014, Simultaneous source separation using a robust Radon transform: Geophysics, 79(1), V1−V11.
[19] Mahdad, A., Doulgeris, P., and Blacquière, G., 2011, Separation of blended data by iterative estimation and subtraction of blending interference noise: Geophysics, 76(3), Q9−Q17.
[20] Mahdad, A., Doulgeris. P., and Blacquière, G., 2012, Iterative method for the separation of blended seismic data: discussion on the algorithmic aspects: Geophysical Prospecting, 60, 782−801.
[21] Moore, I., Monk, D., Hansen, L., and Beasley, C. J., 2012, Simultaneous sources: The inaugrural full-field, marine seismic case history from Australia: 22nd Meeting, ASEG, Expanded Abstracts, 160.
[22] Morlet, J., Arens, G., and Fourgeau, E., et al., 1982, Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media: Geophysics, 47(2), 203-221.
[23] Poole, G., Stevens, K., Maraschini, M., et al., 2014, Blended Dual-source Acquisition and Processing of Broadband Data: 76th EAGE Meeting, Extended Abstracts, Th ELI2 05.
[24] Shang, S., Han, L. G., and Hu, W., 2013, Seismic data analysis using synchrosqueezing wavelet transform: SEG, Expanded Abstracts, 4330-4334.
[25] van Borselen, R., Baardman, R., and Martin, T., 2012, An inversion approach to separating sources in marine simultaneous shooting acquisition-application to a Gulf of Mexico data set: Geophysical Prospecting, 60, 640−647.
[26] van Groenestijn, G. J. A., and Verschuur, D. J., 2011, Using surface multiples to estimate primaries by sparse inversion from blended data: Geophysical Prospecting, 59, 10-23.
[27] Wang, H. C., Chen, S. C., Zhang, B., et al., 2013, Separation method for multi-sourceblended seismic data: Applied Geophysics, 10(3), 251-264.
[1] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[4] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[5] 陈婷, 何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司