APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 326-332    DOI: 10.1007/s11770-012-0340-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地震低频信息计算储层流体流度的方法及其应用
陈学华1, 2,贺振华1, 2,朱四新3,刘伟2,钟文丽4
1. 成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059
2. 成都理工大学地球探测与信息技术教育部重点实验室,成都 610059
3. 华北水利电力学院,郑州 450011
4. 成都理工大学地球科学学院,成都 610059
Seismic low-frequency-based calculation of reservoir fluid mobility and its applications
Chen Xue-Hua1,2, He Zhen-Hua1,2, Zhu Si-Xin3, Liu Wei2, and Zhong Wen-Li4
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu 610059, China.
3. North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
4. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (871 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震信号的低频成分包含了与储层流体流度有关的信息,本文在含流体孔隙弹性介质依赖频率的反射系数渐近分析理论基础上,推导了储层流体流度的计算实现式,构建了低频段优势频率的确定方法,利用地震信号低频段优势频率的瞬时谱,实现了储层流体流度的直接计算。文中应用该方法分别处理了渗透性储层模型的合成地震记录,以及陆上和海上地震资料,结果表明:流体流度信息对于油气储层显示了良好的成像能力,可用于确定油气储层的位置及其空间展布,降低流体识别的多解性和不确定性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈学华
贺振华
朱四新
刘伟
钟文丽
关键词流体流度   地震低频   储层检测   流体识别   瞬时谱分解     
Abstract: Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent refl ectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identifi cation.
Key wordsfluid mobility   seismic low-frequency   reservoir characterization   fluid identifi cation   instantaneous spectral decomposition   
收稿日期: 2012-04-18;
基金资助:

国家自然科学基金项目(编号:41004054),国家科技重大专项项目(编号:2011ZX05023-005-010),和高等学校博士学科点专项科研基金项目(编号:20105122120002)联合资助。

引用本文:   
陈学华,贺振华,朱四新等. 地震低频信息计算储层流体流度的方法及其应用[J]. 应用地球物理, 2012, 9(3): 326-332.
CHEN Xue-Hua,HE Zhen-Hua,ZHU Si-Xin et al. Seismic low-frequency-based calculation of reservoir fluid mobility and its applications[J]. APPLIED GEOPHYSICS, 2012, 9(3): 326-332.
 
[1] Batzle, M. L., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity —Direct measurements: Geophysics, 71(1), N1 - N9.
[2] Castagna, J. P., Sun, S., and Siegfried, R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22(2), 120 - 127.
[3] Chen, X., He, Z., He, X., and Hunag, D., 2012, Numeric simulation of frequency-dependent seismic response and hydrocarbon detection, a turbidite reservoir in JZ Area, the Bohai Sea, China: AAPG 2012 Annual Convention and Exhibition, Long Beach, California, USA.
[4] Chen, X. H., He, Z. H., Huang, D. J., and Wen, X. T., 2009, Low frequency shadow detection of gas reservoirs in time-frequency domain: Chinese Journal of Geophysics, 52(1), 215 - 221.
[5] Chen, X. H., He, Z. H., and Zhong, W. L., 2011, Numeric simulation in the relationship between low frequency shadow and reservoir characteristic: Journal of China University of Mining & Technology, 40(4), 584 - 591.
[6] Ebrom, D., 2004, The low-frequency gas shadow on seismic sections: The Leading Edge, 23(8), 772.
[7] Goloshubin, G. M., Connie, V. A., Korneev, V. A., Silin, D., and Vingaov, V., 2006, Reservoir imaging using low frequencies of seismic reflections: The Leading Edge, 25(5), 527 - 531.
[8] Goloshubin, G. M., Korneev, V. A., and Vingalov, V. M., 2002, Seismic low-frequency effects from oil-saturated reservoir zones: 72th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1813 - 1816.
[9] Goloshubin, G. M., Silin, D., and Vingalov, V., 2008, Reservoir permeability from seismic attribute analysis: The Leading Edge, 27(3), 376 - 381.
[10] He, Z. H., Xiong, X. J., and Bian, L. E., 2008, Numerical simulation of seismic low-frequency shadows and its application: Applied Geophysics, 5(4), 301 - 306.
[11] Hilterman, F. J., Patzek, T. W., Goloshubin, G., Silin, D., Sullivan, C., and Korneev, V., 2007, Advanced reservoir imaging using frequency-dependent seismic attributes:http://petroleum.berkeley.edu/patzek/index.htm.
[12] Korneev, V. A., Goloshubin, G. M., Daley, T. M., and Silin, D. B., 2004, Seismic low frequency effects in monitoring fluid-saturated reservoirs: Geophysics, 69(2), 522 - 532.
[13] Korneev, V. A., Silin, D., Goloshubin, G. M., and Vingalov, V., 2005, Seismic imaging of oil production rate: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1 - 4.
[14] Lichman, E., and Goloshubin, G. M., 2003, Unified approach to gas and fluid detection on instantaneous seismic wavelets: 73th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1699 - 1702.
[15] Lichman, E., Peters, S. W., and Squyres, D. H., 2004a, Wavelet energy absorption-2: Here are velocity aspects of wavelet energy absorption: Oil & Gas Journal, 102(3), 36 - 44.
[16] Lichman, E., Peters, S. W., and Squyres, D. H., 2004b, Four examples show functions of wavelet energy absorption: Oil & Gas Journal, 102(4), 48 - 52.
[17] Liu, Y., 2004, Seismic “low frequency shadows” for gas sand reflection: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1563 - 1566.
[18] Quintal, B., Schmalholz, S. M., Podladchikov, Y. Y., and Carcione, J. M., 2007, Seismic low-frequency anomalies in multiple reflections from thinly-layered poroelastic reservoirs: 77th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abst6racts, 1690 - 1695.
[19] Silin, D., and Goloshubin, G. M., 2008, Seismic wave reflection from a permeable layer: Low-frequency asymptotic analysis: ASME 2008 International Mechanical Engineering Congress and Exposition, 47 - 56, Boston, Massachusetts, USA.
[20] Silin, D., and Goloshubin, G. M., 2009, A low-frequency asymptotic model of seismic reflection from a high-permeability layer: Lawrence Berkeley National Laboratory Report, Berkeley, California, USA.
[21] Silin, D., and Goloshubin, G. M., 2010, An asymptotic model of seismic reflection from a permeable layer: Transport in Porous Media, 83(1), 233 - 256.
[22] Silin, D. B., Korneev, V. A., Goloshubin, G. M., and Patzek, T. W., 2004, A hydrologic view on Biot’s theory of poroelasticity: Lawrence Berkeley National Laboratory Report, Berkeley, California, USA.
[23] Sun, S., Castagna, J. P., and Siegfried, R. W., 2002, Examples of enhanced spectral processing in direct hydrocarbon detection: 72nd AAPG Annual Meeting, Houston, Texas, 10 - 13.
[24] Tai, S., Puryear, C., and Castagna, J. P., 2009, Local frequency as a direct hydrocarbon indicator: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2160 - 2164.
[1] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[2] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[3] 谭茂金, 邹友龙, 张晋言, 赵昕. T2, T1)二维核磁共振数值模拟与流体响应分析[J]. 应用地球物理, 2012, 9(4): 401-413.
[4] 崔杰, 韩立国, 刘前坤, 张显文, 韩利. 弱各向异性介质中P-SV波弹性阻抗与流体识别因子[J]. 应用地球物理, 2010, 7(2): 135-142.
[5] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 7(1): 1-9.
[6] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 6(1): 1-9.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司