APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 319-325    DOI: 10.1007/s11770-012-0344-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
海水速度变化对地震波走时、射线路径及振幅的影响
韩复兴1,孙建国1,王坤2
1. 吉林大学地探学院波动理论与成像技术实验室,长春 130026
2. 吉林交通职业技术学院,长春 130012
The infl uence of sea water velocity variation on seismic traveltimes, ray paths, and amplitude
Han Fu-Xing1, Sun Jian-Guo1, and Wang Kun2
1. College for Geoexploration Science Technology, Jilin University, Changchun 130026, China.
2. Jilin Communications Polytechnic, Changchun 130012, China.
 全文: PDF (1122 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 影响地震勘探的主要因素是地震波在介质中的传播速度,在以往海洋地震勘探数据处理中,都是将海水的传播速度取为常速1500m/s。但对于深水勘探,由于海水中的声速随季节、时间、地理位置、水深、洋流等的变化而不同会造成海水速度的分层结构,因此再将海水速度取为常数进行波场传播计算必然造成地震波传播当中的走时、射线路径和振幅的差异,最终影响偏移剖面的成像结果。本文从影响海水速度变化的主要因素(海水温度、盐度和深度)的经验公式出发,综合考虑其情况建立海水速度模型,并在所建立的模型上定量分析讨论了海水速度变化对地震波走时、射线路径及振幅的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩复兴
孙建国
王坤
关键词海水速度   地震波走时   射线路径   振幅     
Abstract: The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefi eld. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.
Key wordsSea water velocity   traveltimes   ray paths   amplitude   
收稿日期: 2012-03-18;
基金资助:

本文研究由国家科技重大专项子课题(2011ZX05025-001-05)资助。

引用本文:   
韩复兴,孙建国,王坤. 海水速度变化对地震波走时、射线路径及振幅的影响[J]. 应用地球物理, 2012, 9(3): 319-325.
HAN Fu-Xing,SUN Jian-Guo,WANG Kun. The infl uence of sea water velocity variation on seismic traveltimes, ray paths, and amplitude[J]. APPLIED GEOPHYSICS, 2012, 9(3): 319-325.
 
[1] Bertrand, A., and MacBeth, C., 2003, Seawater velocity variations and real-time reservoir monitoring: The Leading Edge, 22(4), 351 - 355.
[2] Feng, S. Z., Li, F. Q., Li, S. Q., et al., 1999, Marine Science Introduction: Higher Education Press, Beijing.
[3] Han, F. X., 2009, On some computational problems in wavefront construction method: PhD Thesis, College for Geoexploration Science Technology of Jilin University, Changchun.
[4] He, J. X., Xia, B., Shi, X. B., et al., 2006, Prospect and progress for oil and gas in deep water of the world, and the potential and prospect foreground for oil and gas: Natural Gas Geoscience, 17(6), 747 - 753.
[5] Huang, X. H., and Song, H., B., 2011, Ocean temperature and salinity distributions inverted from combined reflection seismic and XBT data: Chinese J. Geophys. (in Chinese), 54(5), 1293 - 1300.
[6] Jones, E. J. W., 1999, Marine geophysics: University College London, London, 67 - 68.
[7] Jones, S. M., Sutton, C., Hardy, R. J. J., and Hardy, D., 2010, Seismic imaging of variable water layer sound velocity in Rockall Trough, NE Atlantic, and implications for seismic surveying in deep water: Petroleum Geology Conference Series, 7, 549 - 558.
[8] Liu, B. S., and Lei, J. Y., 1993, Water acoustic principles: Harbin Engineering University Press, Harbin, 59 - 64.
[9] Song, Y., Song, H. B., Chen, L., Dong C. Z., and Huang X. H., 2010, Sea water thermohaline structure inversion from seismic data: Chinese J. Geophys. (in Chinese), 53(11), 2696 - 2702.
[10] Vinje, V., Iversen, E., Åstebøl, K., and Gjøystdal, H., 1996a, Estimation of multivalued arrivals in 3D models using wavefront construction: Part I: Geophysical Prospecting, 44, 819 - 842.
[11] Vinje, V., Iversen, E., Åstebøl, K., and Gjøystdal, H., 1996b, Estimation of multivalued arrivals in 3D models using wavefront construction: Part II: Tracing and interpolation: Geophysical Prospecting, 44, 843 - 858.
[1] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[2] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[3] 田楠, 范廷恩, 王宗俊, 蔡文涛. 广义炮检距地震菲涅耳带横向叠加波场研究[J]. 应用地球物理, 2015, 12(2): 235-243.
[4] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[5] 赫建伟, 陆文凯, 李钟晓. 一种自适应上下缆地震数据合并技术[J]. 应用地球物理, 2013, 10(4): 469-476.
[6] 郭书娟, 李振春, 仝兆岐, 马方正, 刘建辉. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
[7] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[8] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
[9] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 6(1): 18-30.
[10] 周红, 陈晓非. 不规则界面介质中首播的传播路径[J]. 应用地球物理, 2010, 6(1): 66-73.
[11] 孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 7(1): 18-30.
[12] 周红, 陈晓非. 不规则界面介质中首播的传播路径[J]. 应用地球物理, 2010, 7(1): 66-73.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司