APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 848-856    DOI: 10.1007/s11770-024-1065-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
深部煤矿开采速度对采场能量的影响
邓志刚*,王尚,莫云龙, 刘伟建,
1. 煤炭科学研究总院,北京100013;2. 煤炭科学技术研究院有限公司,北京100013;3. 煤矿灾害防控全国重点实验室,北京100013;4. 中原工学院,郑州450007
Influence of Mining Speed on Stope Energy in Deep Mines
Zhi-gang Deng*, Shang Wang, Yun-long MO, Wei-jian Liu
1. Chinese Institute of Coal Science, Beijing 100013, China; 2. China Coal Research Institute, Beijing 100013, China; 3. State Key Laboratory of Coal Mine Disaster Prevention and Control, Beijing 100013, China; 4. Zhongyuan University of Technology, Zhengzhou 450007, China)
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为进一步释放产能,提高工作面推进速度成为煤矿实现高产高效的主要手段,由此引起的冲击地压问题日益严重。因此,为实现煤矿安全、高效开采,必须重视推采速度对冲击地压灾害的影响,确定合理的工作面推采速度。通过建立关键层块体回转下沉模型,分析推采速度对采场覆岩破断的影响,发现随着推采速度加快,采空区矸石压缩量减小,岩块B回转、下沉量减小,迫使岩块A回转、下沉量增大,造成岩块A与岩块B接触方式由线接触变为点接触,岩块间水平推力和剪力增大;岩块A回转、下沉增大加剧了对关键层下方煤岩体挤压程度,造成下方煤岩体应力集中程度增大和能量积聚总量增加;此外,由于采空区矸石压缩量不足,远场关键层弯曲下沉空间有限,悬顶长度增加,采动应力影响范围和能量积聚范围扩大。结合数值试验结果和井下微震监测结果,验证了推采速度与采场能量的相关性,且大能量事件一般出现在推采速度变化后1d~2d后。在此基础上,利用统计学原理,确定了工作面最大推采速度为6m/d是合理的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词冲击地压   推进速度   覆岩结构   能量   统计学     
Abstract: Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines, thereby further improving the production capacity. However, the problem of rock bursts resulting from this approach has become increasingly serious. Therefore, to implement coal mine safety and efficient extraction, the impact of deformation pressure caused by different mining speeds should be considered, and a reasonable mining speed of the working face should be determined. The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model. Results show that with the increasing mining speed, the compression amount of gangue in the goaf decreases, and the rotation and subsidence amount of rock block B above goaf decreases, forcing the rotation and subsidence amount of rock block A above roadway to increase. Consequently, the contact mode between rock block A and rock block B changes from line contact to point contact, and the horizontal thrust and shear force between blocks increase. The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer, thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation. In addition, due to the insufficient compression of gangue in the goaf, the bending and subsidence space of the far-fi eld key layer are limited, the length of the suspended roof increases, and the influence range of mining stress and the energy accumulation range expand. Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy, and high-energy events generally appear 1–2 d after the change in mining speed. On this basis, the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable.
Key words rockburst    mining speed    overburden structure    energy    statistics   
收稿日期: 2023-08-19;
基金资助:This work was supported by Technology Innovation Fund of China Coal Research Institute (2022CX-I-04), Science and Technology Innovation Venture Capital Project of China Coal Technology Engineering Group (2020-2-TD-CXY005)
通讯作者: Deng Zhigang (Email: dengzhigang2004@163.com).     E-mail: dengzhigang2004@163.com
作者简介: Deng Zhigang (1981-), Male,Changchun City, Jilin Province, researcher, PhD. His research interests include the prevention and control of rock bursts. TEL: 010-84263796
引用本文:   
. 深部煤矿开采速度对采场能量的影响[J]. 应用地球物理, 2025, 22(3): 848-856.
. Influence of Mining Speed on Stope Energy in Deep Mines[J]. APPLIED GEOPHYSICS, 2025, 22(3): 848-856.
 
没有本文参考文献
[1] 王永刚,王雅婷,赵德勇,蔡克汉,刘伟方,*,贺玉婷,. 基于岩石物理及地质统计学的深度学习预测含水饱和度-以鄂尔多斯盆地古峰庄地区盒8段为例[J]. 应用地球物理, 2025, 22(2): 331-341.
[2] 郑强强*,钱佳威,李萍丰,殷志强,赵桓庭. 冲击压缩载荷作用下损伤砂岩的动态能量演化及破碎特征[J]. 应用地球物理, 2024, 21(2): 232-245.
[3] 刘建坡, 司英涛, 张长银, 王人. 基于微震事件S 波和P 波能量比值的金属矿山开采过程围岩破裂机制分析*[J]. 应用地球物理, 2020, 17(3): 465-474.
[4] 蔡中正, 韩立国, 许卓. 基于波场分离归一化成像条件的被动源数据多次波逆时偏移成像*[J]. 应用地球物理, 2019, 16(3): 338-348.
[5] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[6] 张盼, 韩立国, 周岩, 许卓, 葛奇鑫. 基于被动源多窗谱方法的主动源地震低频数据重[J]. 应用地球物理, 2015, 12(4): 585-597.
[7] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司