APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 585-597    DOI: 10.1007/s11770-015-0520-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于被动源多窗谱方法的主动源地震低频数据重
张盼,韩立国,周岩,许卓,葛奇鑫
吉林大学地球探测科学与技术学院,长春 130026
Passive-source multitaper-spectral method based low-frequency data reconstruction for active seismic sources
Zhang Pan1, Han Li-Guo1, Zhou Yan1, Xu Zhuo1, and Ge Qi-Xin1
1. College of Geo-exploration Sciences and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (2399 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 被动源地震数据包含丰富的低频信息,本文有效地提取并利用这些信息对缺失低频的主动源地震数据进行低频重构,提出了基于多正弦窗的被动源多窗谱重构方法,并给出了相应的多震源多道重构公式。与常规互相关法和常规反褶积法重构的被动源记录相比,该方法能重构出更为准确的相对振幅信息。通过分析被动源数据重构前后的频谱特性,发现被动源的低频特性在重构和去噪处理后能更明显的体现出来。并提出了一种用被动源数据重构主动源低频信息的方法,即在功率谱上进行匹配,并在频域进行补偿和平滑。最后进行了数值算例的验证,对低频重构后的数据进行了叠前深度偏移处理。能量匹配方法能够用被动源的低频信息有效地重构主动源缺失的低频信息,低频重构后的记录在偏移成像中能体现更多的细节信息和深部构造。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张盼
韩立国
周岩
许卓
葛奇鑫
关键词被动源   多窗谱方法   低频重构   能量匹配     
Abstract: Passive seismic data contain large amounts of low-frequency information. To effectively extract and compensate active seismic data that lack low frequencies, we propose a multitaper spectral reconstruction method based on multiple sinusoidal tapers and derive equations for multisource and multitrace conditions. Compared to conventional cross correlation and deconvolution reconstruction methods, the proposed method can more accurately reconstruct the relative amplitude of recordings. Multidomain iterative denoising improves the SNR of retrieved data. By analyzing the spectral characteristics of passive data before and after reconstruction, we found that the data are expressed more clearly after reconstruction and denoising. To compensate for the low-frequency information in active data using passive seismic data, we match the power spectrum, supplement it, and then smooth it in the frequency domain. Finally, we use numerical simulation to verify the proposed method and conduct prestack depth migration using data after low-frequency compensation. The proposed power-matching method adds the losing low frequency information in the active seismic data using the low-frequency information of passive-source seismic data. The imaging of compensated data gives a more detailed information of deep structures.
Key wordsPassive source   multitaper spectral reconstruction   low-frequency compensation   power matching   
收稿日期: 2014-11-20;
基金资助:

本研究由国家自然科学基金项目(编号:41374115)和国家高技术研究发展计划(863计划)重大项目课题(编号:2014AA06A605)联合资助。

引用本文:   
张盼,韩立国,周岩等. 基于被动源多窗谱方法的主动源地震低频数据重[J]. 应用地球物理, 2015, 12(4): 585-597.
Zhang Pan,Han Li-Guo,Zhou Yan et al. Passive-source multitaper-spectral method based low-frequency data reconstruction for active seismic sources[J]. APPLIED GEOPHYSICS, 2015, 12(4): 585-597.
 
[1] Artman, B., 2006, Imaging passive seismic data: Geophysics, 71(4), SI177−SI187.
[2] Claerbout, J. F., 1968, Synthesis of a layered medium from its acoustic transmission response: Geophysics, 33(2), 264−269.
[3] Chen, X. H., He, Z. H., Zhu, S. X., Liu, W., and Zhong, W. L., 2012, Seismic low-frequency-based calculation of reservoir fluid mobility and its application: Applied Geophysics, 9(3), 326−332.
[4] Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K., 2009, Reflection images from ambient seismic noise: Geophysics, 74(5), A63−A67.
[5] Draganov, D., Wapenaar, K., and Thorbecke, J., 2004, Passive seismic imaging in the presence of white noise sources: The Leading Edge, 23(9), 889−892.
[6] Draganov, D., Wapenaar, K., Mulder, W., Singer, J., and Verdel, A., 2007, Retrieval of reflections from seismic background-noise measurements: Geophysical Research Letters, 34(4), 545−559.
[7] Groenestijn, G. V., and Verschuur, D. J., 2010, Estimation of primaries by sparse inversion from passive seismic data: Geophysics, 75(4), SA61−SA69.
[8] Han, L. G., Zhang, Y., Han, L., and Yu, Q. L., 2012, Compressed sensing and sparse inversion based low-frequency information compensation of seismic data: Journal of Jilin University (Earth Science Edition) (in Chinese), 42(S3), 259−264.
[9] Han, L. G., Tan, C. Q., Lü, Q. T., Zhang, Y. H., and Gong, X. B., 2013, Separation of multi-source blended seismic acquisition data by iterative denoising: Chinese Journal of Geophysics (in Chinese), 56(7), 2402−2412.
[10] Han, M., 2014, Methods and application of full waveform inversion for abyssal seismic data: PhD Thesis, Jilin University, Changchun.
[11] Huang, C., Dong, L. and Chi, B., 2015, Elastic envelop inversion using multicomponent seismic data with filtered-out low frequencies, Applied Geophysics, 12(3), 362−377.
[12] Panea, I., Draganov, D., Vidal, C. A., and Mocanu, V., 2014, Retrieval of reflections from ambient noise recorded in the Mizil area, Romania: Geophysics, 79(3), Q31−Q42.
[13] Pang, W. D., Yang, R. H., Zheng, D. C., Liu, N., and Shen, Y. H., 2012, Deconvolution method research on extracting Green’s function from the ambient-noise in the frequent earthquake region: Journal of Seismological Research(in Chinese), 35(1), 29−35.
[14] Prieto, G. A. and Beroza, G. C., 2008, Earthquake ground motion prediction using the ambient seismic field: Geophysical Research Letters, 35(14), 137-149.
[15] Prieto, G. A., Lawrence, J. F., and Beroza, G. C., 2009, Anelastic earth structure from the coherency of the ambient seismic field: Journal of Geophysical Research, 114, B07303.
[16] Ramirez, A. C. and Weglein, A. B., 2009, Greens theorem as a comprehensive framework for data reconstruction, regularization, wavefield separation, seismic interferometry, and wavelet estimation: A tutorial: Geophysics, 74(6), W35-W62.
[17] Riedel, K. S., and Sidorenko, A., 1995, Minimum bias multiple taper spectral estimation: IEEE Transactions on Signal Processing, 43(1), 188−195.
[18] Ruigrok, E. N., and Vidal, C. A., 2013, Body-wave Receiver-pair Seismic Interferometry: 75th EAGE Meeting, Extended Abstracts, Th−P15−02.
[19] Schuster, G. T., and Rickett, J., 2001, Daylight imaging in V(x,y,z) media: Stanford Exploration Project, ReportSEP−105, 209−227.
[20] Si, S. K., Tian, X. B., Zhang, H. J., and Teng, J. W., 2014, Multiple sinusoidal tapers method to estimate receiver function: Chinese Journal of Geophysics (in Chinese), 57(3), 789−799.
[21] Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., and Wapenaar, K., 2009, A comparison of strategies for seismic interferometry: Surveys in Geophysics, 30(4), 503-523.
[22] Snieder, R., Sheiman, J., and Calvert, R., 2006, Equivalence of the virtual source method and wavefield deconvolution in seismic interferometry: Physical Review E, 73(6), 066620.
[23] Tan, C. Q., Han, L. G., Zhang, Y. H., and Deng, W. B., 2012, Separation of blended data by iterative denoising: 74th EAGE Meeting, Extended Abstracts, A045.
[24] Thomson, D. J., 1982, Spectrum estimation and harmonic analysis: Proceeding of the IEEE, 70(9), 1055−1096.
[25] Vasconcelos, I., and Snieder, R., 2008, Interferometry by deconvolution, Part 1—Theory for acoustic waves and numerical examples: Geophysics, 73(3), S115−S128.
[26] Vasconcelos, I., and Snieder, R., 2008, Interferometry by deconvolution, Part 2—Theory for elastic waves and application to drill-bit seismic imaging: Geophysics, 73(3), S129−S141.
[27] Wapenaar, K., 2004, Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlations: Physical Review Letters, 93(25), 254301−4.
[28] Wapenaar, K. and Fokkema, J., 2006, Green’s function representations for seismic interferometry: Geophysics, 71(4), SI33−SI46.
[29] Wapenaar, K., Neut, J., and Ruigrok, E., 2008, Passive seismic interferometry by multidimensional deconvolution: Geophysics, 73(6), 51−56.
[30] Xie, X. B., 2013, Recover certain low-frequency information for full waveform inversion: 83th Ann. Internat. Mtg, Soc. Expl. Geophys. Extended Abstracts, 1053−1057.
[31] Xu, Z., Juhlin, C., Gudmundsson, O., Zhang, F., Yang, C., Kashubin, A., and Lüth, S., 2012, Reconstruction of subsurface structure from ambient seismic noise:an example from Ketzin, Germany: Geophysical Journal International, 189(2), 1085−1102.
[32] Zhang, P., Han, L. G., Liu, Q., Zhang, Y. H., and Chen, X., 2015, Interpolation of seismic data from active and passive sources and their joint migration imaging: Chinese Journal of Geophysics (in Chinses), 58(5), 1754−1766.
[33] Zhang, J. H., Zhang, B. B., Zhang, Z. J., Liang, H. X., and Ge, D. M., 2015, Low-frequency data analysis and expansion, Applied Geophysics, 12(2), 212−220.
[34] Zheng, Y., 2010, Retrieving the exact Green’s function by wavefield crosscorrelation: Journal of the Acoustical Society of America, 127(3), EL93-EL98.
[35] Zheng, Y., He, Y., and Fehler, M. C., 2011, Crosscorrelation kernels in acoustic Green’s function retrieval by wavefield correlation for point sources on a plane and a sphere: Geophysical Journal International, 184(2), 853−859.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司