APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 331-341    DOI: 10.1007/s11770-025-1147-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于岩石物理及地质统计学的深度学习预测含水饱和度-以鄂尔多斯盆地古峰庄地区盒8段为例
王永刚,王雅婷,赵德勇,蔡克汉,刘伟方,*,贺玉婷,
1. 中国石油长庆油田分公司勘探开发研究院,西安,710018; 2. 低渗透油气田勘探开发国家工程试验室,西安,710018; 3. 极遨技术服务(北京)有限公司.北京,100015
Deep learning for predicting water saturation using rock physics analysis and eostatistics theory: A case study of the Psh8 in GFZ area, Ordos Basin
Wang Yong-gang, Wang Ya-ting, Zhao De-yong, Cai Ke-han, Liu Wei-fang,*, and HeYu-ting
1. Exploration and Development Research Institute of PetroChina Changqing Oilfield Company, Xi’an ,Shanxi,710018,China 2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields,Xi’an,Shanxi,710018, China 3. GeoSoftware Technology Services(Beijing) Co.Ltd,Beijing,100015,China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 致密砂岩储层非均质性强、气水关系复杂,定量预测含水饱和度的难度很大。以鄂尔多斯盆地GFZ地区二叠系石盒子组H8段为目标,利用岩石物理分析和地质统计学理论指导下的深度学习进行了致密砂岩含水饱和度的预测。研究结果表明:①从测井解释获得了孔隙度、饱和度等结果的实际井出发,通过创建适合本地区的岩石物理模型,建立油藏参数(孔隙度、饱和度)与弹性曲线(纵波速度、横波速度和密度等)的连接;②在地质统计学规律(弹性参数与油藏参数的背景趋势、测井曲线的垂向变差等)的约束下,对储层条件进行模拟(如孔隙度、饱和度、厚度等),从而生成海量的伪井及相应的Zoeppritz方程正演的地震道集;③利用卷积神经网络(CNN)对目标曲线进行训练,从而对目标体进行预测。针对盒8段的预测含水饱和度与两口盲井吻合度很高,对致密砂岩的含气性认识提供了一种的可靠依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词盒8段致密砂岩储层   岩石物理分析与地质统计学理论   伪井与相应地震正演道集   卷积神经网络(CNN)   含水饱和度预测     
Abstract: Tight sandstone reservoirs have strong heterogeneity and complex gas–water relationship, causing difficulty in quantitatively predicting water saturation. Deep learning, combined with rock physics analysis and geostatistics theory, was used to predict water saturation in tight sandstone, focusing on the Psh8 in the GFZ area of the Ordos Basin. Results show that: Starting with actual wells where porosity and saturation results are obtained from log interpretations, the relationship between reservoir parameters (porosity and saturation) and elastic properties (P-wave velocity, S-wave velocity, and density) is established through the development of a rock physics model suitable for the region. Under the constraints of geostatistical laws, such as background trends of elastic and reservoir parameters and the vertical variations in logging curves, reservoir conditions (including porosity, saturation, and thickness) are simulated to generate numerous pseudowells and corresponding seismic gathers modeled using the Zoeppritz equation. A convolution neural network is used to train the target curve and predict the target body. The predicted water saturation of the Psh8 shows strong agreement with the results from two blind wells, providing a reliable basis for understanding the water saturation (Sw) of tight sandstone.
Key wordsTight sandstone reservoir of Psh8   rock physics analysis and geostatistics theory   pseudowells and corresponding seismic gathers   convolution neural network (CNN)    predict water saturation   
收稿日期: 2024-08-11;
基金资助:本项工作由以下单位资助:中国石油天然气集团公司重大专项“致密砂岩气藏提高采收率关键技术研究”(编号:2023ZZ25);甘肃省科技重大专项“陇东地区天然气储层地球物理预测关键技术研究与应用”(编号:23ZDGA004);中国石油长庆油田公司“青石毛气田含水气藏三维地震精细解释及井位支持”(编号:2023QCPJ33)
通讯作者: Liu Wei-fang (Email: Weifang.liu@geosoftware.com; 435236940@qq.com).     E-mail: Weifang.liu@geosoftware.com; 435236940@qq.com
作者简介: 刘伟方,高级工程师,现任职于地学软件技术服务(北京)有限公司(GeoSoftware Technology Services (Beijing) Co. Ltd.)。1996年毕业于中国科学院兰州分院,获沉积学硕士学位。现主要从事综合地震解释研究工作。 电子邮箱:Weifang.liu@geosoftware.com
引用本文:   
. 基于岩石物理及地质统计学的深度学习预测含水饱和度-以鄂尔多斯盆地古峰庄地区盒8段为例[J]. 应用地球物理, 2025, 22(2): 331-341.
. Deep learning for predicting water saturation using rock physics analysis and eostatistics theory: A case study of the Psh8 in GFZ area, Ordos Basin[J]. APPLIED GEOPHYSICS, 2025, 22(2): 331-341.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司