APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 820-834    DOI: 10.1007/s11770-025-1297-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于深度残差收缩网络的地磁数据去噪
张斌,杨超,郑豪豪,严加永,麻昌英,*
1. 东华理工大学电子与电气工程学院 ,南昌330013;2. 教育部核技术应用工程研究中心(华东理工大学),南昌,330013;3. 南昌市地质灾害智能感知技术与仪器重点实验室(东华理工大学),南昌330013;4. 中国地质科学院SinoProbe实验室,北京100094;5. 新联超导技术有限公司,上海201800
Geomagnetic Data Denoising Based on Deep Residual Shrinkage Network
Zhang Bin, Yang Chao, Zheng Hao-Hao, Yan Jia-Yong, and Ma Chang-Ying,*
1. School of Electronic and Electrical Engineering, East China University of Technology, Nanchang 330013, China. 2. Engineering Research Center of Nuclear Technology Application, East China University of Technology, Ministry of Education, Nanchang, 330013, China. 3. Nanchang Key Laboratory of Intelligent Sensing Technology and Instruments for Geological Hazards, East China University of Technology, Nanchang 330013, China. 4. Xinlian Superconducting Technology Co., Ltd, Shanghai 201800, China. 5. The SinoProbe Laboratory, Chinese Academy of Geological Sciences, Beijing 100094, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地磁数据在地震监测和深地探测等领域具有重要价值。然而,现有地磁观测数据中人文噪声污染日益严重,给地磁数据的高精度计算分析带来了巨大挑战。为解决这一问题,我们提出了一种基于残差收缩网络的地磁数据去噪方法。我们使用模拟和实测地磁数据构建了一个样本数据库,开发并训练了RSN去噪网络。通过其独特的软阈值模块,RSN能够自适应地从待处理数据中学习和去除噪声,有效提升数据质量。在合成数据实验中,RSN使含噪数据的信噪比平均提升了约12dB。我们还通过时域序列、多重平方相干性和地磁传递函数的结果,对实测数据进行了去噪分析,进一步验证了所提方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词残差收缩网络(RSN)   信号处理   地磁信号去噪   电磁勘探   深度学习     
Abstract: Geomagnetic data hold significant value in fields such as earthquake monitoring and deep earth exploration. However, the increasing severity of anthropogenic noise contamination in existing geomagnetic observatory data poses substantial challenges to high-precision computational analysis of geomagnetic data. To overcome this problem, we propose a denoising method for geomagnetic data based on the Residual Shrinkage Network (RSN). We construct a sample library of simulated and measured geomagnetic data develop and train the RSN denoising network. Through its unique soft thresholding module, RSN adaptively learns and removes noise from the data, effectively improving data quality. In experiments with noise-added measured data, RSN enhances the quality of the noisy data by approximately 12 dB on average. The proposed method is further validated through denoising analysis on measured data by comparing results of time-domain sequences, multiple square coherence and geomagnetic transfer functions.
Key words residual shrinkage network (RSN)    signal processing    geomagnetic signal denoising    electromagnetic exploration    deep learning (DL)   
收稿日期: 2025-03-30;
基金资助:Deep Earth Probe and Mineral Resources Exploration -National Science and Technology Major Project (2024ZD1000208), SinoProbe Laboratory Fund of Chinese Academy of Geological Sciences (SL202401), Project of the Nuclear Technology Application Engineering Research Center of the Ministry of Education (HJSJYB2021-3), 2022 Fuzhou Science and Technology Plan Project (Research on High Voltage Electrostatic Atomization New Air Sterilization and Purification Technology and Equipment), Jiangxi Province Major Science and Technology Special Project (20233AAE02008), Fuzhou Unveiling and Leading Project (Jiangxi Gandian) - Online Diagnosis and Intelligent Cloud Platform for the Health Status of Transformer and Distribution Equipment.
通讯作者: Ma Chang-Ying (E-mail: hktk-12@163.com).     E-mail: hktk-12@163.com
作者简介: Zhang Bin. He received a Ph.D. degree from Institute of plasma physics Chinese Academy of Sciences in 2017, and conducted postdoctoral research at CGN Beigu Technology Co., Ltd. from 2019 to 2022.Currently, he works at East China University of technology and is committed to the research of artificial intelligence in the fi elds of geomagnetic signals, physical electronics and new energy.
引用本文:   
. 基于深度残差收缩网络的地磁数据去噪[J]. 应用地球物理, 2025, 22(3): 820-834.
. Geomagnetic Data Denoising Based on Deep Residual Shrinkage Network[J]. APPLIED GEOPHYSICS, 2025, 22(3): 820-834.
 
没有本文参考文献
[1] 王书明,底青云,*,肖韫鑫,方启超,李德山. 三维M C S E M电磁场分解数值滤波频谱分析[J]. 应用地球物理, 2025, 22(3): 563-570.
[2] 张帆,韩晓明,裴东洋,*,崔丰智,白沂杭,杨晓忠,. 基于机器学习的2015年阿拉善左旗5.8级地震序列分析[J]. 应用地球物理, 2025, 22(3): 711-728.
[3] 窦艺涛*,董国旗,李鑫. 基于CNN和Grad-CAM的探地雷达道路地下目标自动识别研究[J]. 应用地球物理, 2025, 22(2): 488-498.
[4] 樊华,王东博,张扬*,王文旭,李涛. 深度学习结合平稳小波包变换压制地震随机噪声[J]. 应用地球物理, 2024, 21(4): 740-751.
[5] 张琳,陈广东,巴晶*,José M. Carcione,徐文豪,方志坚. 基于深度学习的不同分辨率CT扫描图像预测碳酸盐岩渗透率[J]. 应用地球物理, 2024, 21(4): 805-819.
[6] 李斌 ,许强* ,刘天翔* 程强,汤明高,郑光,王卓. 用于滑坡探测的电磁仪数据采集电路设计与实现[J]. 应用地球物理, 2024, 21(2): 316-330.
[7] 李斌, 许强*, 刘天翔*, 程强, 汤明高, 郑光, 雷航. 滑坡探测电磁仪配套数据采集软件设计与实现[J]. 应用地球物理, 2024, 21(1): 133-146.
[8] 张雷,王健,焦瑞莉,陈浩,王秀明,冀有名. 基于深度学习划分阵列感应测井曲线的层界面[J]. 应用地球物理, 2021, 18(1): 45-53.
[9] 蔡寅,Mei-Ling Shyu,涂钥轩,滕云田,胡星星,. 基于LSTM-RNN 的地震前兆数据异常检测新方法*[J]. 应用地球物理, 2019, 16(3): 257-268.
[10] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[11] 王祝文, 王晓丽, 向旻, 刘菁华, 张雪昂, 杨闯. 基于分数阶Fourier变换及SPWD分布的储集层信息提取[J]. 应用地球物理, 2012, 9(4): 391-400.
[12] 张铁轩, 陶果, 李君君, 王兵, 王华. 等效偏移距偏移方法在声波反射成像测井中的应用研究[J]. 应用地球物理, 2009, 6(4): 303-310.
[13] 王若, 王妙月, 底青云, 王光杰. 源和勘探区间导电体对有源电磁勘探影响的2D数值模拟研究[J]. 应用地球物理, 2009, 6(4): 311-318.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司