APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (4): 311-318    DOI: 10.1007/s11770-009-0040-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
源和勘探区间导电体对有源电磁勘探影响的2D数值模拟研究
王若,王妙月,底青云,王光杰
中科院地质与地球物理研究所,北京 100029
2D numerical study on the effect of conductor between the transmitter and survey area in CSEM exploration
Wang Ruo1, Wang Miaoyue1, Di Qing-Yun1, and Wang Guang Jie1
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (779 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在CSEM野外工作中,通常把接收机置于离源3~5倍趋肤深度以外的远区。本文从正演和反演两个角度研究了当源和接收机之间存在导电体时,该导电体对远区中目标体响应的影响。2D有限元正演结果表明导电体主要影响中低频的观测结果,导电体的电导率越低,尺寸越大,影响也越大,并且影响程度随着观测频率的降低而逐渐加大。反演结果表明若不考虑源和勘探区间导电体的存在,反演得到的目标体横向位置会向源的方向移动,带来解释上的误差。在CSEM实际工作中,应该是采用多方位的场源作三维采集和三维反演,以减少源和勘探区间低阻体的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王若
王妙月
底青云
王光杰
关键词电磁勘探   二维线源   导电体   正演   反演     
Abstract: In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.
Key wordsCSEM exploration   2D line source   low resistivity body   forward modeling   inversion   
收稿日期: 2009-07-01;
基金资助:

本研究由中国科学院项目(编号:kzcx2-yw-113、kzcx2-yw-121和kzcx1-yw-15-4)支持。

引用本文:   
王若,王妙月,底青云等. 源和勘探区间导电体对有源电磁勘探影响的2D数值模拟研究[J]. 应用地球物理, 2009, 6(4): 311-318.
WANG Ruo,WANG Miao-Yue,DI Qing-Yun et al. 2D numerical study on the effect of conductor between the transmitter and survey area in CSEM exploration[J]. APPLIED GEOPHYSICS, 2009, 6(4): 311-318.
 
[1] Bartel, L.C., and Jacobson., R. D., 1987, Results of a controlled-source audio frequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii: Geophysics, 5, 665 - 677.
[2] Boschetto, N. B., and Hohmann, G. W., 1991, Controlled-source audio frequency magnetotelluric responses of three-dimensional bodies: Geophysics, 56, 255-264.
[3] Chen, M. S., and Yan, S., 2005, Analytical study on field zones, record rules, shadow and source overprint effects in CSAMT exploration: Chinese J. Geophys. (in Chinese), 48, 951 - 958.
[4] Dey, A., and Morrison, H. F., 1979, Resistivity modeling for arbitrarily shaped three dimensional structures: Geophysics, 44, 753 - 780.
[5] He, J. S., 1990, The Control source audio-frequency magnetotelluric method: Zhongnan Industry University Press, Changsha, China1990.
[6] Kuznetzov, A. N., 1982, Distorting effects during electromagnetic sounding of horizontally non-uniform media using an artificial field source: Earth Physics, Izvestiya, 18, 130 - 137.
[7] Lu, X., Unsworth, M., and Booker, J., 1999, Rapid relaxation inversion of CSAMT data: Geophysics Journal International. 138, 381 - 392.
[8] Mitsuhata, Y., 2000, 2-D electromagnetic modeling by finite-element method with a dipole source and topography: Geophysics, 65, 465 - 475.
[9] Routh, P. S., and Oldenburg, D. W., 1999, Inversion of controlled-source audio-frequency magnetoteluric data for a horizontal-layered earth: Geophysics, 64, 1689 - 1697.
[10] Sasaki, Y., Yoneda, Y., and Matsuo, K., 1992, Resistivity imaging of controlled-source audio frequency magnetotelluric data: Geophysics, 57, 952 - 955.
[11] Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two and three- dimensional magnetotelluric data: Journal of Geophysics Research, 96, 3905 - 3922.
[12] Wang, R., Wang, M. Y., and Di, Q. Y., 2006, Forward modeling of the electromagnetic field due to a line source in frequency domain using the finite element method: Chinese Journal of Geophysics, 49, 1700 - 1709.
[13] Wannamaker, P., 1997, Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for structure of the western caldera: Geophysics, 62, 451 - 465.
[14] Ward, S. H., 1971, Electromagnetic theory for geophysical applications: Mining Geophysics, Vol. II, Theory: Society of Exploration Geophysicists, Tulsa.
[15] Yamashita, M., Hollof, P. G., and Pelton, W. H., 1985, CSAMT case histories with a multi-channel CSAMT system and discussion of near-field data correction: 55th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 276 - 278.
[16] Zhang, J. F., Tang, J.T., Yu, Y., and Liu, C. S., 2009, Finite element numerical simulation on line control source based on quadratic interpolation: Journal of Jilin University (Earth Science Edition), 39, 929 - 935.
[17] Zonge, K. L., and Hughes, L. J., 1991, Controlled source audio-frequency magnetotellurics: in Nabighian, M. N., ed., Electromagnetic methods in applied geophysics, 2, Practice, Society of Exploration Geophysics, Tulsa, 713 - 809.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[3] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[4] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[5] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[6] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[7] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[8] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[9] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[10] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[11] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[12] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[13] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[14] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[15] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司