APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (1): 176-196    DOI: 10.1007/s11770-024-1083-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
塔里木盆地顺北地区潮坪带砂体地震预测方法研究
孙志朋,杨瑞召 *,陈井瑞,张昊,张诗杰,杨鹏辉,耿锋
1 . 应急管理与安全工程学院,华北理工大学,唐山063000,中国;2. 地球科学与测绘工程学院,中国矿业大学(北京),北京100083,中国;3. 中国石化西北油田分公司,乌鲁木齐830011,中国
Seismic Prediction Methods for Tidal Flat Sand Bodies in the Shunbei Area of the Tarim Basin
Zhi-peng Sun, Rui-zhao Yang*, Jing-rui Chen, Hao Zhang, Shi-jie Zhang, Peng-hui Yang, Feng Geng
1. School of Emergency Management and Safety Engineering, North China University of Science and Technology, Tangshan 063000, China 2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China 3. Petroleum Exploration & Production Research Institute of Northwest Oilfi eld Company Sinopec, Urumqi 830011, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 塔里木盆地顺北地区潮坪带发现了大量致密砂岩油气区,需详细了解砂体分布特征以优化勘探部署。然而,单一方法难以有效预测砂体的分布。地震相分析可揭示砂体的宏观发育特征,但在微观细节刻画上存在不足。而单井沉积相可描述砂体的精细特征,却难以反映整体规律。本文以顺北地区柯坪塔格组下段为例,提出结合地震相与单井沉积微相的方法,通过无监督向量量化机获取地震相,以确定砂体的宏观分布;并结合主成分分析增强砂体细节刻画。利用三维地震数据、测井数据和地质解释结果进行精准构造解释,建立高精度地层展布框架,提高砂体预测精度。地震相分析揭示砂体的宏观分布,而单井岩心及测井曲线则明确潮道和砂坝的纵向发育特征。在不同沉积相带中,通过主成分分析技术优选出对砂体最敏感的地震属性。结果表明:潮下带均方根振幅属性、潮间带瞬时相位属性分别对砂体最为敏感,增强了砂体的识别精度及其轮廓和形状的刻画。该方法结合了地震相、单井沉积微相、机器学习方法提高了砂体刻画的精确性,为砂体预测提供了一种新的思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词顺北地区   地震相   向量量化机   主成分分析   砂体预测     
Abstract: The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs. The tidal flat zone in the Shunbei area is currently in the detailed exploration stage, requiring a comprehensive description of the sand body distribution characteristics for rational exploration well deployment. However, using a single method for sand body prediction has yielded poor results. Seismic facies analysis can effectively predict the macro-development characteristics of sedimentary sand bodies but lacks the resolution to capture fi ne details.In contrast, single-well sedimentary facies analysis can describe detailed sand body development but struggles to reveal broader trends. Therefore, this study proposes a method that combines seismic facies analysis with single-well sedimentary microfacies analysis, using the lower section of the Kepingtage Formation in the Shunbei area as a case study. First, seismic facies were obtained through unsupervised vector quantization to control the macro-distribution characteristics of sand bodies, while principal component analysis (PCA) was applied to improve the depiction of fi ne sand body details from seismic attributes. Based on 3D seismic data, well-logging data, and geological interpretation results, a detailed structural interpretation was performed to establish a high-precision stratigraphic framework, thereby enhancing the accuracy of sand body prediction.Seismic facies analysis was then conducted to obtain the macro-distribution characteristics of the sand bodies. Subsequently, core data and logging curves from individual wells were used to clarify the vertical development characteristics of tidal channels and sandbars. Next, PCA was employed to select the seismic attributes most sensitive to sand bodies in different sedimentary facies. Results indicate that RMS amplitude in the subtidal zone and instantaneous phase in the intertidal zone are the most sensitive to sand bodies. A comparative analysis of individual seismic attributes for sand body characterization revealed that facies-based delineation improved the accuracy of sand body identification, effectively capturing their contours and shapes. This method, which integrates seismic facies, single-well sedimentary microfacies, and machine learning techniques, enhances the precision of sand body characterization and off ers a novel approach to sand body prediction.
Key wordsShunbei Area    Seismic Facies    Vector Quantization    PCA    Sandstone prediction   
收稿日期: 2024-04-26;
基金资助:This work was supported by the Collaborative Project Grant from the Exploration and Development Research Institute of SINOPEC Northwest Oilfield Company (Grant No. KY2021-S-104).
通讯作者: 杨瑞召 (yrz@cumtb.edu.cn)     E-mail: yrz@cumtb.edu.cn
作者简介: Corresponding Author: Dr. Ruizhao Yang, Professor and Ph.D. advisor, currently serves in the School of Geosciences and Surveying Engineering at China University of Mining and Technology (Beijing). His research areas include integrated studies in oil and gas exploration and development, high-resolution seismic research in coalbed methane and coal fields, and the exploration and development of unconventional resources. Email: yrz@cumtb.edu.cn
引用本文:   
. 塔里木盆地顺北地区潮坪带砂体地震预测方法研究[J]. 应用地球物理, 2025, 22(1): 176-196.
. Seismic Prediction Methods for Tidal Flat Sand Bodies in the Shunbei Area of the Tarim Basin[J]. APPLIED GEOPHYSICS, 2025, 22(1): 176-196.
 
没有本文参考文献
[1] 王峣钧,王良基,李坤鸿,刘宇,罗贤哲,邢凯. 稀疏表征谱聚类无监督地震相分析方法研究*[J]. 应用地球物理, 2020, 17(4): 533-543.
[2] 宋承云, 刘致宁, 蔡涵鹏, 钱峰, 胡光岷. 基于叠前纹理的储层特征和地震相分析[J]. 应用地球物理, 2016, 13(1): 69-79.
[3] 朱凯光, 马铭遥, 车宏伟, 杨二伟, 嵇艳鞠, 于生宝, 林君. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. 应用地球物理, 2012, 9(1): 1-8.
[4] 刘杏芳, 郑晓东, 徐光成, 王玲, 杨昊. 基于LLE方法的地震属性特征提取技术及其应用[J]. 应用地球物理, 2010, 7(4): 365-375.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司