APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 69-79    DOI: 10.1007/s11770-016-0541-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于叠前纹理的储层特征和地震相分析
宋承云1,刘致宁1,蔡涵鹏2,钱峰1,胡光岷2
1. 电子科技大学通信与信息工程学院,成都 610000
2. 电子科技大学资源与环境学院,成都 610000
Pre-stack-texture-based reservoir characteristics and seismic facies analysis
Song Cheng-Yun1, Liu Zhi-Ning1, Cai Han-Peng2, Qian Feng1, and Hu Guang-Min2
1. School of Communication and Information Engineering, University of Electronic and Technology of China, Chengdu 610000, China.
2. School of Resources and Environment, University of Electronic and Technology of China, Chengdu 610000, China.
 全文: PDF (1584 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震纹理属性与地震相和储层特征密切相关,广泛地应用在地震资料的解释中。传统的地震纹理属性基于叠后数据提取,受叠加作用的影响,易造成地层特征信息的损失,不利于复杂储层的描述。本文提出叠前纹理属性,其不仅可以精细地刻画不同反射点波形的横向连续性,也能体现AVO、各向异性和介质的均质性。基于叠前纹理属性丰富的地层特征表达能力,结合SOM聚类算法,形成了利用叠前数据进行地震相分析的方法。该方法应用于中国某工区宽方位地震资料,通过对比证实了叠前纹理属性描述地层横向变化的优越性,并能揭示各向异性特征及非均质性特征,基于叠前纹理的分类结果能有效区分不同的地震反射模式,为地震相分析提供了可靠的依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋承云
刘致宁
蔡涵鹏
钱峰
胡光岷
关键词叠前纹理属性   储层特征   地震相分析   聚类分析   灰度共生矩阵     
Abstract: Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation. However, information is mislaid in the stacking process when traditional texture attributes are extracted from post-stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture attributes are introduced, these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-organizing map algorithm. This method is tested on wide azimuth seismic data from China, and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified, in addition to the method’s ability to reveal anisotropy and heterogeneity characteristics. The pre-stack texture classification results effectively distinguish different seismic reflection patterns, thereby providing reliable evidence for use in seismic facies analysis.
Key wordsPre-stack texture attributes   reservoir characteristic   seismic facies analysis   SOM clustering   gray level co-occurrence matrix   
收稿日期: 2015-11-27;
基金资助:

本研究由电子科技大学科研启动基金(编号:ZYGX2015KYQD049)资助。

引用本文:   
宋承云,刘致宁,蔡涵鹏等. 基于叠前纹理的储层特征和地震相分析[J]. 应用地球物理, 2016, 13(1): 69-79.
Song Cheng-Yun,Liu Zhi-Ning,Cai Han-Peng et al. Pre-stack-texture-based reservoir characteristics and seismic facies analysis[J]. APPLIED GEOPHYSICS, 2016, 13(1): 69-79.
 
[1] Chopra, S., and Alexeev, V., 2006, Applications of texture attribute analysis to 3D seismic data: The Leading Edge, 25(8), 934−940.
[2] Chopra, S., and Marfurt, K. J., 2007, Seismic Attributes for Prospect Identification and Reservoir Characterization: 77th Annual International Meeting, SEG, Expanded Abstracts, 114−116.
[3] Chopra, S., and Marfurt, K. J., 2014, Seismic facies analysis using generative topographic mapping: 84th Ann. Internat. Mtg, Soc. Expl. Geopghs., Expanded Abstracts, 1390−1394.
[4] de Matos, M. C., Osorio, P. L., and Johann, P. R., 2006, Unsupervised seismic facies analysis using wavelet transform and self-organizing maps: Geophysics, 72(1), P9−P21.
[5] de Matos, M. C., Marfurt, K. J., and Johann, P. R., 2010, Seismic interpretation of self-organizing maps using 2D color displays: Revista Brasileira de Geofísica, 28(4), 631−642.
[6] de Matos, M. C., Yenugu, M., Angelo, S. M., et al., 2011, Integrated seismic texture segmentation and cluster analysis applied to channel delineation and chert reservoir characterization: Geophysics, 76(5), P11−P21.
[7] Du, H., Cao, J., Xue, Y., et al., 2015, Seismic facies analysis based on self-organizing map and empirical mode decomposition: Journal of Applied Geophysics, 112, 52−61.
[8] Eichkitz, C. G., Schreilechner, M. G., de Groot, P., et al., 2015, Mapping directional variations in seismic character using gray-level co-occurrence matrix-based attributes: Interpretation, 3(1), T13−T23.
[9] Gao, D., 2003, Volume texture extraction for 3D seismic visualization and interpretation: Geophysics, 68(4), 1294−1302.
[10] Gao, D., 2007, Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation: Offshore Angola, west Africa., AAPG Bulletin, 91(12), 1665−1683.
[11] Gao, D., 2011, Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review: Geophysics, 76(2), W1−W13.
[12] Han, M., Zhao, Y., Li, G., et al., 2011, Application of EM algorithms for seismic facices classification: Computational Geosciences, 15(3), 421−429.
[13] Kourki, M. and Riahi, M. A., 2014, Seismic facies analysis from pre-stack data using self-organizing maps: Journal of Geophysics and Engineering, 11(6), 065005.
[14] Mallick, S., Craft, K. L., Meister, L. J., et al., 1998, Determination of the principal directions of azimuthal anisotropy from P-wave seismic data: Geophysics, 63(2), 692−706.
[15] Marfurt, K. J., 2014, Seismic attributes and the road ahead: 84th Ann. Internat. Mtg, Soc. Expl. Geopghs., Expanded Abstracts, 4421−4426.
[16] Marroquín, I. D., Brault, J., and Hart, B., 2008, A visual data-mining methodology for seismic facies analysis: Part 1-Testing and comparison with other unsupervised clustering methods: Geophysics, 74(1), 1−11.
[17] Roy, A., de Matos, M. C., and Marfurt, K. J., 2010, Automatic Seismic Facies Classification with Kohonen Self Organizing Maps-a Tutorial: Geohorizons Journal of Society of Petroleum Geophysicists, 6−14.
[18] Roy, A., 2013, Latent space classification of seismic facies: PhD Thesis, University of Oklahoma, Oklahoma.
[19] Saraswat, P., and Sen, M. K., 2012, Artificial immune-based self-organizing maps for seismic-facies analysis: Geophysics, 77(4), O45−O53.
[20] Song, C., Li, Z, Liu, Z, et al., 2015, Prestack Reflection Pattern Based Seismic Facies Analysis: 85th Ann. Internat. Mtg, Soc. Expl. Geopghs., Expanded Abstracts, 1633−1637.
[21] West, B. P., May, S. R., Eastwood, J. E., et al., 2002, Interactive seismic facies classification using textural attributes and neural networks: The Leading Edge, 21(10), 1042−1049.
[22] Yenugu, M., Marfurt, K. J., and Marson, S., 2010., Seismic texture analysis for reservoir prediction and characterization: The Leading Edge, 29(9), 1116−1121.
[1] 田雨,徐洪,张兴阳,王红军,郭同翠,张良杰,龚幸林. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
[2] Mohamed Deriche. 基于结构属性排序的稳定的盐丘探测[J]. 应用地球物理, 2016, 13(3): 449-458.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司