APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2020, Vol. 17 Issue (4): 533-543    DOI: 10.1007/s11770-020-0839-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
稀疏表征谱聚类无监督地震相分析方法研究*
王峣钧,王良基,李坤鸿,刘宇,罗贤哲,邢凯
1. 电子科技大学资源与环境学院,成都 611731;
2. 太原理工大学求实学院,太原 030600
Unsupervised seismic facies analysis using sparse representation spectral clustering*
Wang Yao-Jun, Wang Liang-Ji, Li Kun-Hong, Liu Yu, Luo Xian-Zhe, and Xing Kai
1. School of Resource and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
2. Qiushi College, Taiyuan University of Technology, Taiyuan 030600, China.
 全文: PDF (1129 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统无监督地震相分析技术需要预设地震数据服从特定数学分布,对地震数据聚类分析普适性不强。论文引入谱聚类技术实现基于图论思想的地震相分析,该方法将地震数据视为空间中的点与边所构成的图,通过对图进行最优化切割,以实现地震数据聚类。为解决谱聚类方法计算复杂度高、内存消耗巨大问题,引入稀疏表征思想,通过选择少量局部稀疏表征点来近似地表征所有样本点谱聚类矩阵,从而大幅降低谱聚类矩阵计算成本。通过物理模型和实际资料验证表明,所提出基于稀疏表征谱聚类的地震相分析方法无需任何假设,适应多种形态地震数据分析,同时计算准确性和运算效率得到明显提升,能够满足实际地震数据应用需求。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震相分析   谱聚类   稀疏表征   无监督     
Abstract: Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution. However, fi eld seismic data may not meet this condition, thereby leading to wrong classifi cation in the application of this technology. This paper introduces a spectral clustering technique for unsupervised seismic facies analysis. This algorithm is based on on the idea of a graph to cluster the data. Its kem is that seismic data are regarded as points in space, points can be connected with the edge and construct to graphs. When the graphs are divided, the weights of the edges between the different subgraphs are as low as possible, whereas the weights of the inner edges of the subgraph should be as high as possible. That has high computational complexity and entails large memory consumption for spectral clustering algorithm. To solve the problem this paper introduces the idea of sparse representation into spectral clustering. Through the selection of a small number of local sparse representation points, the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation. Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis. The computing efficiency of this new method is better than that of the conventional spectral clustering method, thereby meeting the application needs of fi eld seismic data.
Key wordsseismic facies analysis   spectral clustering   sparse representation   unsupervised clustering   
收稿日期: 2019-09-08;
基金资助:

基金项目:本研究由国家自然科学基金(编号:U1562218,41604107,41804126)资助。

通讯作者: 王峣钧 (Email: yaojun.wang@uestc.edu.cn)     E-mail: yaojun.wang@uestc.edu.cn
作者简介: 王峣钧,副教授,2009年毕业于安徽大学数学与应用数学专业获学士学位,2015年于中国石油大学(北京)获地质资源与地质工程博士学位,2015至2019年电子科技大学任讲师,2019年至今于电子科技大学任副教授。目前主要从事地学人工智能、地球物理反演相关研究 。 单位:电子科技大学资源与环境学院 地址:四川省成都市高新西区西源大道2006号 邮编:611731 邮箱:yaojun.wang@uestc.edu.cn
引用本文:   
. 稀疏表征谱聚类无监督地震相分析方法研究*[J]. 应用地球物理, 2020, 17(4): 533-543.
. Unsupervised seismic facies analysis using sparse representation spectral clustering*[J]. APPLIED GEOPHYSICS, 2020, 17(4): 533-543.
 
没有本文参考文献
[1] 宋承云, 刘致宁, 蔡涵鹏, 钱峰, 胡光岷. 基于叠前纹理的储层特征和地震相分析[J]. 应用地球物理, 2016, 13(1): 69-79.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司