APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (1): 119-131    DOI: 10.1007/s11770-023-1009-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
优化的Laplace-Fourier域二维声波方程有限差分正演模拟方法
王婧羽,范娜*,陈雪菲,钟守睿,李博煜,李丹,赵刚
1. 油气资源与勘探技术教育部重点实验室(长江大学),武汉 430100;2.长江大学地球物理与石油资源学院,武汉430100
2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method
Wang Jing-Yu, Fan Na*, Chen Xue-Fei, Zhong Shou-Rui, Li Bo-Yu, Li Dan, Zhao Gang
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China. 2. College of Geophysics and Oil Resources, Yangtze University, Wuhan 430100, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Laplace-Fourier域有限差分正演模拟是Laplace-Fourier域全波形反演的重要基础,优化的正演模拟方法能够提高反演的速度和精度。基于Laplace-Fourier域二维声波方程,采用一种十分灵活的具有中心对称的有限差分模板,利用数值相速度和衰减速度的Laplace-Fourier域频散分析方法,本文发展了一种优化的Laplace-Fourier域声波方程有限差分正演模拟方法。将此优化方法应用于标准的9点格式、空间不连续变网格有限差分正演的7点格式和9点格式中,计算其优化系数,数值实验表明此优化算法不仅具有较高的精度,可以适应不同纵横比的网格,且算子模板的灵活性使其能应用到不连续变网格模拟中以减少计算成本。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词Laplace-Fourier域   二维声波方程   有限差分   优化系数     
Abstract: Laplace–Fourier (L-F) domain finite-difference (FD) forward modeling is an important foundation for L-F domain full-waveform inversion (FWI). An optimal modeling method can improve the effi ciency and accuracy of FWI. A fl exible FD stencil, which requires pairing and centrosymmetricity of the involved gridpoints, is used on the basis of the 2D L-F domain acoustic wave equation. The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients. An optimal FD forward modeling method is fi nally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7- and 9-point schemes, where the latter two schemes are used in discontinuous-grid FD modeling. Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost.
Key wordsLaplace–Fourier domain    2D acoustic wave equation    finite difference    optimization coefficients.   
收稿日期: 2021-09-10;
基金资助:This work was supported by the National Natural Science Foundation of China (no. 41604037),Natural Science Foundation of Hubei Province (no.2022CFB125), the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education (no.K2021-09) and College Students' Innovation and Entrepreneurship Training Program (no. 2019053).
通讯作者: 范娜 (Email: fanna@yangtzeu.edu.cn).     E-mail: fanna@yangtzeu.edu.cn
作者简介: Na Fan received the B.S. degree in geophysics from Wuhan University, Wuhan, China, in 2010, and the Ph.D. degree from the Institute of Geology and Geophysics, Chinese Academy of Science, Beijing, China, in 2015. She is currently an Associate Professor at the Yangtze University, Wuhan. Her research interests include seismic data processing, forward modeling, inversion, and imaging.Email: fanna@yangtzeu.edu.cn
引用本文:   
. 优化的Laplace-Fourier域二维声波方程有限差分正演模拟方法[J]. 应用地球物理, 2025, 22(1): 119-131.
. 2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method[J]. APPLIED GEOPHYSICS, 2025, 22(1): 119-131.
 
没有本文参考文献
[1] 魏旭若,白文磊,李幼铭,刘璐,王之洋*. 一种用于非对称性波动方程数值模拟的模拟退火混合蜣螂优化算法[J]. 应用地球物理, 2024, 21(3): 513-527.
[2] 朱孟权, 王之洋*,刘洪 , 李幼铭,Yu Du-li. 基于随机增强量子粒子群算法的弹性波数值模拟[J]. 应用地球物理, 2024, 21(1): 80-92.
[3] 黎昌成,陈晓非. 三维频率域声波方程大型系数矩阵的高效求解[J]. 应用地球物理, 2021, 18(3): 299-316.
[4] 黄建平,慕鑫茹,李振春,李庆洋,袁双齐,国运东. VTI 介质纯qP 波最小二乘逆时偏移及其在陆上资料中的应用*[J]. 应用地球物理, 2020, 17(2): 208-220.
[5] 孙成禹,李世中,徐宁. 适于弹性波方程无网格有限差分数值解的PML与CFS-PML 吸收边界条件*[J]. 应用地球物理, 2019, 16(4): 440-457.
[6] 李勤, 马随波, 赵斌, 章薇. 基于煤层的改进的旋转交错网格有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4(2)): 582-590.
[7] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[8] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[9] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[10] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[11] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[12] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[13] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[14] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[15] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司