APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 258-269    DOI: 10.1007/s11770-017-0624-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于时间辛格式的傅里叶有限差分地震波场正演
方刚1,2,巴晶3,刘欣欣1,2,祝堃4,刘国昌5
1. 国土资源部天然气水合物重点实验室, 青岛海洋地质研究所,青岛 266071
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
3. 河海大学地球科学与工程学院,南京 211100
4. 中国石油大学(华东)地球科学与技术学院,青岛 266580
5. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method
Fang Gang1,2, Ba Jing3, Liu Xin-Xin1,2, Zhu Kun4, and Liu Guo-Chang5
1. The Key Laboratory of Gas Hydrate, Ministry of Land and Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China.
4. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
5. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China.
 全文: PDF (733 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波场正演模拟是地震资料处理、解释中最为重要的技术之一。地震波场正演模拟在大时间步长、长时程的波场延拓中,存在计算不稳定的问题。本文基于声波方程的Hamilton表述,在波动方程求解中用辛差分格式进行时间网格离散,用傅里叶有限差分进行空间网格离散,提出一种新的保结构地震波场正演模拟方法—辛格式傅里叶有限差分法,在保证计算精度的同时提高计算的稳定性。利用声学近似处理空间-波数混合域的积分算子,将该方法推广至各向异性介质。给出各向同性和各向异性条件下的地震正演模拟的计算流程,并将本文方法用于BP盐丘、BP TTI等模型的波场正演模拟。数值算例表明本文开发的方法适用于速度变化剧烈的复杂介质地震波场正演模拟,计算精度高,数值频散小,在各向异性介质正演中能够有效避免qSV波残余,在大时间步长的迭代计算中稳定性好。本文为在辛算法的框架下实现高精度地震正演模拟提供了一种新的选择。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词辛算法   傅里叶有限差分   Hamilton系统   地震正演   各向异性     
Abstract: Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
Key wordssymplectic algorithm   Fourier finite-difference   Hamiltonian system   seismic modeling   anisotropic   
收稿日期: 2016-12-26;
基金资助:

本研究由国家自然科学基金项目(编号:41504109和41404099)、山东省自然科学基金项目(编号:BS2015HZ008)和“江苏特聘教授”计划联合资助。

引用本文:   
. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
 
[1] Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63(2), 623−631.
[2] Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65(4), 1239−1250.
[3] Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media: Geophysics, 60(5), 1550−1566.
[4] Araujo, E. S., Pestana, R. C., and Santos, A. W. G., 2014, Symplectic scheme and the Poynting vector in reverse-time migration: Geophysics, 79(5), S163−S172.
[5] Ba, J., Cao, H., Yao, F. C., et al., 2008a, Double-porosity rock model and Squirt flow for laboratory frequency band: Applied Geophysics, 5(4), 261−276.
[6] Ba, J., Du, Q. Z., Carcione, J. M., et al., 2015, Seismic exploration of hydrocarbons in heterogeneous reservoirs: New theories, methods and applications: Elsevier, United Kingdom.
[7] Ba, J., Nie, J., Cao, H., et al., 2008b, Mesoscopic fluid flow simulation in double-porosity rocks: Geophysical. Research Letters, 35(4), L04303.
[8] Billette, F., and Brandsberg-Dahl, S., 2005, The 2004 BP velocity benchmark: 67th Annual International Conference and Exhibition, EAGE, Extended Abstracts, B035.
[9] Bonomi, E., Brieger, L., Nardone, C., et al., 1998, 3D spectral reverse time migration with no-wraparound absorbing conditions: 68th Annual International Meeting, SEG, Expanded Abstracts, 1925−1928.
[10] Du, Q.Z., Li, B., and Hou, B., 2009, Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme: Applied Geophysics, 6(1), 42−49.
[11] Du, X., Fowler, P. J., and Fletcher, R. P., 2014, Recursive integral time-extrapolation methods for waves: A comparative review: Geophysics, 79(1), T9−T26.
[12] Etgen, J. T., 1986, High-order ?nite-difference reverse time migration with the 2-way non-re?ecting wave equation: Stanford Exploration Project, Report SEP-48, 133−146.
[13] Etgen, J. T., and Brandsberg-Dahl, S., 2009, The pseudo-analytical method: application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation: 71st Annual Meeting, SEG, Expanded Abstracts, 2552−2556.
[14] Fang, G., Fomel, S., Du, Q. Z., et al., 2014, Lowrank seismic-wave extrapolation on a staggered grid: Geophysics, 79(3), T157−T168.
[15] Fang, G., Hu, J., and Fomel, S., 2015, Weighted least square based lowrank finite difference for seismic wave extrapolation: 85th Annual International Meeting, SEG, Expanded Abstracts, 3554−3559.
[16] Feng, K., and Qin, M., 2003, Symplectic geometric algorithms for Hmiltionian systems: Zhejiang Science and Technology Press, China.
[17] Finkelstein, B., and Kastner, R., 2007, Finite difference time domain dispersion reduction schemes: Journal of Computational Physics, 221(1), 422−438.
[18] Fomel, S., 2004, On anelliptic approximations for qP velocities in VTI media: Geophysical Prospecting, 52(3), 247−259.
[19] Fomel, S., Sava, P., Vlad, I., et al., 2013a, Madagascar: Open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software, 1, e8.
[20] Fomel, S., Ying, L., and Song, X., 2013b, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, 61(3), 526−536.
[21] Fowler, P. J., Du, X., and Fletcher, R.P., 2010, Coupled equations forreverse time migration in transversely isotropic media: Geophysics, 75(1), S11-S22.
[22] Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase shift plus interpolation: Geophysics, 49(2), 124−131.
[23] Grechka, V., Zhang, L., and Rector, J. W., 2004. Shear waves in acoustic anisotropic media: Geophysics, 69(2), 576-582.
[24] Li, Y., Li, X., and Zhu, T., 2011, The seismic scalar wave field modeling by symplectic scheme and singular kernel convolutional differentiator: Chinese Journal Geophysics (in Chinese), 54(7), 1827−1834.
[25] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-difference method for the acoustic wave equation: Journal of Computational Physics, 228(23), 8779−8806.
[26] Liu, J., Wei, X. C., Ji, Y. X., et al., 2015, Second-order seismic wave simulation in the presence of a free-surface by pseudo-spectral method: Journal of Applied Geophysics, 114, 183−195.
[27] Lou, M., Liu, H., and Li, Y., 2001, Hamiltonian description and symplectic method of seismic wave propagation: Chinese Journal Geophysics (in Chinese), 44(1), 120−128.
[28] Ma, X., Yang, D., and Zhang, J., 2010, Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation: Chinese Journal Geophysics (in Chinese), 53(8), 1993−2003.
[29] Pestana, R., Chu, C., and Stoffa, P. L., 2011, High-order pseudo-analytical method for acoustic wave modeling: Journal of Seismic Exploration, 20(3), 217−234.
[30] Pestana, R. C., and Stoffa, P. L., 2010, Time evolution of the wave equation using rapid expansion method: Geophysics, 75(4), T121−T131.
[31] Reshef, M., Kosloff, D., Edwards, M., et al., 1988, Three-dimensional acoustic modeling by the Fourier method: Geophysics, 53(9), 1175−1183.
[32] Song, X., and Fomel, S., 2011, Fourier finite-difference wave propagation: Geophysics, 76(5), T123−T129.
[33] Song, X., Fomel, S., and Ying, L., 2013, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation: Geophysical Journal International, 193(2), 960−969.
[34] Soubaras, R., and Zhang, Y., 2008, Two-step explicit marching method for reverse time migration: 70th Annual International Conference and Exhibition,EAGE, Extended Abstracts, F041.
[35] Stoffa, P. L., and Pestana, R. C., 2009, Numerical solution of the acoustic wave equation by the rapid expansion method (REM)-A one step time evolution algorithm: 71st Annual International Meeting, SEG, Expanded Abstracts, 2672−2676.
[36] Sun, G., 1997, Aclass of explicitly symplectic schemes for wave equation: Comput. Math. (in Chinese), 1, 1−10.
[37] Sun, J., Fomel, S., and Ying, L., 2015, Low-rank one-step wave extrapolation for reverse time migration: Geophysics, 81(1), S39−S54.
[38] Takeuchi, N., and Geller, R. J., 2000, Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media: Physics of the Earth and Planetary Interiors, 119(1), 99−131.
[39] Tal-Ezer, H., Kosloff, D., and Koren, Z., 1987, An accurate scheme for seismic forward modeling: Geophysical Prospecting, 35(5), 479−490.
[40] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[41] Wu, W. J., Lines, L. R., and Lu, H. X., 1996, Analysis of higher-order, finite-difference schemes in 3-D reverse-time migration: Geophysics, 61(3), 845−856.
[42] Zhang, Y., and Zhang, G., 2009, One-step extrapolation method for reverse time migration: Geophysics, 74(4), A29−A33.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[8] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[9] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[10] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[11] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[12] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[13] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[14] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[15] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司