APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (4): 680-696    DOI: 10.1007/s11770-024-1080-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于改进 U-net网络的多次波压制
张全,吕晓雨,雷芩,彭博*,李艳
1.西南石油大学计算机科学学院,成都 610500 ;2.油气藏地质及开发工程国家重点实验室(西南石油大学),成都 610500
Seismic multiple attenuation based on improved U-Net
Quan Zhang, Xiao-yu Lv, Qin Lei, Bo Peng*, Yan Li, and Yao-wen Zhang
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China 2. School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 有效压制地震多次波是地震资料处理过程中的重要环节,尽管已有多种多次波压制方法,但是依然存在多次波压制不充分、计算量大的问题,对于复杂地质条件下的多次波压制更具挑战。传统的多次波压制方法依赖先验地质构造信息且需要大量的计算,对于复杂地质产生的多次波压制效果较差,且计算速度较低。使用深度神经网络压制多次波,能有效降低人工成本,同时还可以提高多次波的压制效率。本文提出一种改进的 U-net 网络多次波压制方法,采用 U-net 作为主要网络,在网络中加入注意力局部对比度(Atentional Local Contrast,ALC)模块,该模块有利于对地震数据中细节信息进行合理处理,突出地震多次波与一次波之间的差异。将含有多次波和一次波的地震数据作为输入,把只含一次波的地震数据作为输出,对本文提出的网络进行训练。通过两个水平层状速度模型和 sigsbee2B 速度模型验证了本文方法在多次波压制中的有效性和稳定性,利用迁移学习使得训练后的模型具有跨工区压制多次波的能力,有效提高了多次波压制效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词多次波压制   U-net   注意力局部对比度     
Abstract: Effective attenuation of seismic multiples is a crucial step in the seismic data processing workfl ow. Despite the existence of various methods for multiple attenuation, challenges persist, such as incomplete attenuation and high computational requirements, particularly in complex geological conditions. Conventional multiple attenuation methods rely on prior geological information and involve extensive computations. Using deep neural networks for multiple attenuation can effectively reduce manual labor costs while improving the efficiency of multiple suppression. This study proposes an improved U-net-based method for multiple attenuation. The conventional U-net serves as the primary network, incorporating an attentional local contrast module to effectively process detailed information in seismic data. Emphasis is placed on distinguishing between seismic multiples and primaries. The improved network is trained using seismic data containing both multiples and primaries as input and seismic data containing only primaries as output. The effectiveness and stability of the proposed method in multiple attenuation are validated using two horizontal layered velocity models and the Sigsbee2B velocity model. Transfer learning is employed to endow the trained model with the capability to suppress multiples across seismic exploration areas, effectively improving multiple attenuation efficiency.
Key words Multiple suppression   U-net   Attentional local contrast   
收稿日期: 2023-08-23;
基金资助:This work was supported by the Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (PLN2022-51, PLN2021-21) and the Open Fund of the Science and Technology Bureau of Nanchong City, Sichuan Province (23XNSYSX0089, SXQHJH046).
通讯作者: 彭博,(Email: bopeng@swpu.edu.cn).     E-mail: bopeng@swpu.edu.cn
作者简介: Quan Zhang, an associate professor, obtained his Ph.D. from the University of Electronic Science and Technology of China.Currently, he serves as a faculty member at the School of Computer Science and Software Engineering, Southwest Petroleum University. His research focuses on seismic exploration signal processing and parallel computing..
引用本文:   
. 基于改进 U-net网络的多次波压制[J]. 应用地球物理, 2024, 21(4): 680-696.
. Seismic multiple attenuation based on improved U-Net[J]. APPLIED GEOPHYSICS, 2024, 21(4): 680-696.
 
没有本文参考文献
[1] 谢俊法*, 王孝, 王小卫, 伍敦仕, 曾华会, 金保中. 曲率放大的λ?f域高分辨率抛物Radon变换多次波压制方法[J]. 应用地球物理, 2024, 21(1): 169-178.
[2] 张锐埼,宋鹏,刘保华,张晓波,谭军,邹志辉,解闯,王绍文. 基于U-Net 神经网络的低频涌浪噪声压制*[J]. 应用地球物理, 2020, 17(3): 419-431.
[3] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[4] 庞廷华, 陆文凯, 马永军. 带连续性约束的L1范数方法用于多次波自适应相减[J]. 应用地球物理, 2009, 6(3): 241-247.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司