APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 433-441    DOI: 10.1007/s11770-013-0405-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
λ-f域高分辨率Radon变换多次波压制方法研究
李志娜1,李振春1,王鹏2,徐强3
1. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580
2. 中国石油大学(华东)石油工程学院,山东青岛 266580
3. 中海油田服务股份有限公司,天津塘沽 300451
Multiple attenuation using λ–f domain high-resolution Radon transform
Li Zhi-Na1, Li Zhen-Chun1, Wang Peng2, and Xu Qiang3
1. School of Geosciences, China University of Petroleum (Huadong), Qingdao 266580, China.
2. School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao 266580, China.
3. China Oilfield Services Limited, Tianjin 300451, China.
 全文: PDF (1008 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 抛物Radon变换在多次波压制中有着广泛的应用,为了进一步提高Radon变换的计算效率和计算精度,本文对Abbad的快速改进抛物Radon变换进行了改进,发展了λ-f域高分辨率Radon变换。该方法通过引入新变量λ消除了变换算子对频率的依赖性,变换算子及其逆求取仅需计算一次,极大的提高了计算效率;此外,在λ-f域内一次波和多次波能量分别分布在不同斜率的直线上,这使得滤波算子的选取尤为简单。同时本文方法继承了高分辨率Radon变换的优势,可进一步提高多次波压制的精度。模型试算结果表明,该方法不仅能有效的进行多次波的压制,而且能较好的保持有效波数据的AVO特性。实际资料处理结果进一步验证了该方法的有效性和可行性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志娜
李振春
王鹏
徐强
关键词λ-f   高分辨率   抛物Radon变换   多次波压制     
Abstract: The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed the λ–f domain high-resolution Radon transform based on the fast and modified parabolic Radon transform presented by Abbad. The introduction of a new variable λ makes the transform operator frequency-independent. Thus, we need to calculate the transform operator and its inverse operator only once, which greatly improves the computational efficiency. Besides, because the primaries and multiples are distributed on straight lines with different slopes in the λ–f domain, we can easily choose the filtering operator to suppress the multiples. At the same time, the proposed method offers the advantage of high-resolution Radon transform, which can greatly improve the precision of attenuating the multiples. Numerical experiments suggest that the multiples are well suppressed and the amplitude versus offset characteristics of the primaries are well maintained. Real data processing results further verify the effectiveness and feasibility of the method.
Key wordsλ–f domain   high resolution   parabolic Radon transform   multiple attenuation   
收稿日期: 2013-06-11;
基金资助:

本研究由国家973计划(2011CB202402)、国家自然科学基金(41104069)和中央高校基本科研业务费专项资金资助(14CX06017A)联合资助。

引用本文:   
李志娜,李振春,王鹏等. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
LI Zhi-Na,LI Zhen-Chun,WANG Peng et al. Multiple attenuation using λ–f domain high-resolution Radon transform[J]. APPLIED GEOPHYSICS, 2013, 10(4): 433-441.
 
[1] Abbad, B., Ursin, B., and Porsani, M. J., 2011, A fast, modified parabolic Radon transform: Geophysics, 76(1), V11 - V24.
[2] Bortfeld, R., 1961, Multiple Reflection in Nordwestdeutschland: Geophysical Prospecting, 4, 394 - 423.
[3] Cary, P. W., 1998, The simplest discrete Radon transform: 68th Annual International Meeting, SEG, Expanded Abstracts, 1999 - 2002.
[4] Foster, D., and Mosher, C., 1992, Suppression of multiple reflections using the radon transform: Geophysics, 57, 386 - 395.
[5] Hampson, D., 1986, Inverse velocity stacking for multiple elimination: Canadian Journal of Exploration Geophysics, 22, 44 - 55.
[6] Sacchi, M. D., and Tadeusz, J. U., 1995, High-resolution velocity gathers and offset space reconstruction: Geophysics, 60, 1169 - 1177.
[7] Sacchi, M. D., and Porsani, M., 1999, Fast high resolution parabolic Radon transform: 69th Annual International Meeting, SEG, Expanded Abstracts, 1477 - 1480.
[8] Sava, P., and Guitton, A., 2003, Multiple attenuation in the image space: SEP-113, 31 - 44.
[9] Sava, P., and Guitton, A., 2005, Multiple attenuation in the image space: Geophysics, 70(1), V10 - V20.
[10] Shi, Y., and Wang, W. H., 2012, Surface-related multiple suppression approach by combining wave equation prediction and hyperbolic Radon transform: Chinese J. Geophys. (in Chinese), 55(9), 3115 - 3125.
[11] Taner, M. T., 1980, Long-period sea-floor multiples and their suppression: Geophysical Prospecting, 28(1), 30 - 48.
[12] Verschuur, D. J., 1991, Surface-related multiple elimination, an inversion approach: Ph.D. thesis, Delft Univ. of Technology.
[13] Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166 - 1177.
[14] Wang, B. L., Sacchi, M. D., and Yin, X. Y., 2011, The Multiple Attenuation Based on AVO-Preserving Radon Transform: SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts (in Chinese), 651 - 655.
[15] Weglein, A. B., Gasparotto, F. A., Carvalho, P. M. and Stolt, R. H., 1997, An inverse-scattering series method for attenuating multiples in seismic reflection data: Geophysics, 62, 1975 - 1989.
[16] Xiong, D., Zhao, W., and Zhang, J. F., 2009, Hybrid-domain high-resolution parabolic transform and its application to demultiple: Chinese J. Geophys. (in Chinese), 52(4), 1068 - 1077.
[17] Yuan, S. Y., and Wang, S. X., 2011, Influence of inaccurate wavelet phase estimation on seismic inversion: Applied Geophysics, 8(1), 48 - 59.
[18] Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 1 - 10.
[19] Zhu, S. W., Wei, X. C., Li, F., et al., 2002, Separating and suppressing multiples by sparse solution of parabolic Radon transform: Oil Geophysical Prospecting, 37(2), 110 - 115.
[1] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[2] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[3] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[4] 李子顺. 高密度偏移技术原理与应用[J]. 应用地球物理, 2012, 9(3): 286-292.
[5] 庞廷华, 陆文凯, 马永军. 带连续性约束的L1范数方法用于多次波自适应相减[J]. 应用地球物理, 2009, 6(3): 241-247.
[6] 李勇, 王绪本, 李志荣, 李琼, 李正文. 高分辨率非线性三维整体反演研究[J]. 应用地球物理, 2009, 6(2): 159-165.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司