APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (3): 241-247    DOI: 10.1007/s11770-009-0028-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
带连续性约束的L1范数方法用于多次波自适应相减
庞廷华1,陆文凯1,马永军1,2
1. 清华大学自动化系 清华信息科学与技术国家实验室(筹)智能技术与系统国家重点实验室,北京 100084
2. 九江职业技术学院电子工程系,江西,九江 332007
Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity
Pang Ting-Hua1, Lu Wen-Kai1, and Ma Yong-Jun1,2

1. State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.
2. Department of Electronic Engineering, Jiujiang Vocational and Technical Collage, Jiujiang 332007, China.

 全文: PDF (796 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 一次波L1范数最小化的多次波自适应相减方法,简称L1方法,是基于匹配滤波器设计的多次波自适应相减算法中的一种常用方法。当一次波和多次波混杂在一起时,L1方法有时会伤害一次波,导致一次波同相轴的连续性变差。本文利用预测误差滤波器度量一次波同相轴的连续性,在L1方法的基础上,提出一种能够在压制多次波的同时,尽量保持一次波同相轴连续性的多次波自适应相减算法,简称连续性约束L1方法。利用Pluto模型数据进行多次波相减的结果表明,连续性约束L1方法能够在有效压制多次波的同时,更好地保护一次波。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞廷华
陆文凯
马永军
关键词多次波压制   多次波自适应相减   L1范数   连续性约束     
Abstract: The L1-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
Key wordsMultiple attenuation   adaptive multiple subtraction   L1-norm   lateral continuity   
收稿日期: 2009-04-01;
基金资助:

本研究由国家自然科学基金项目(40874056)、国家“863”项目(2006AA09A101-0102)和教育部新世纪优秀人才支持计划资助。

引用本文:   
庞廷华,陆文凯,马永军. 带连续性约束的L1范数方法用于多次波自适应相减[J]. 应用地球物理, 2009, 6(3): 241-247.
PANG Ting-Hua,LU Wen-Kai,MA Yong-Jun. Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity[J]. APPLIED GEOPHYSICS, 2009, 6(3): 241-247.
 
[1] Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysical Prospecting, 54(7), 718 - 729.
[2] Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by T-X and F-X techniques: Geophysics, 60, 1887 - 1896.
[3] Backus, M. M., 1959, Water reverberations: their nature and elimination: Geophysics, 24(2), 233 - 261.
[4] Brown, M., and Clapp, R., 2000, T-x domain, pattern-based ground roll removal: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2103 - 2106.
[5] Bube, K. P., and Langan, R. T., 1997, Hybrid L1/L2 minimization with applications to tomography: Geophysics, 62(4), 1183 - 1195.
[6] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67 (12), 1946 - 1960.
[7] Fomel, S., 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74(1), 25 - 33.
[8] Foster, D. J., 1992, Suppression of multiple reflections using the Radon transform: Geophysics, 57(3), 386 - 395.
[9] Gersztenkorn, A., Bednar, J. B., and Lines, L. R., 1986, Robust iterative inversion for the one-dimensional acoustic wave equation: Geophysics, 51, 357 - 368.
[10] Guitton, A., 2002, Coherent noise attenuation using inverse problems and prediction-error filters: First Break, 20, 161 - 167.
[11] Guitton, A., 2005, Multiple attenuation in complex geology with a pattern-based approach: Geophysics, 70(4), V97 - V107.
[12] Guitton, A., and Cambois, G., 1998, Prestack elimination of complex multiples, A Gulf of Mexico subsalt example: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1329 - 1332 .
[13] Guitton, A., and Verschuur, D. J., 2004, Adaptive subtraction of multiples using the L1-norm: Geophysical Prospecting, 52(1), 27 - 38.
[14] Liu, J., and Lu, W. K., 2008, An improved predictive deconvolution based on maximization of non-Gaussianity: Applied Geophysics, 5(3), 189 - 196.
[15] Lu, W. K., 2006, Adaptive multiple subtraction using independent component analysis: Geophysics, 71(5), S179 - S184.
[16] Lu, W. K., and Liu, L., 2009, Adaptive multiple subtraction based on constrained independent component analysis: Geophysics, 74(1), V1 - V7.
[17] Lu, W. K., Luo, Y., Zhao, B., and Qian, Z. P., 2004, Adaptive multiple wave subtraction using independent component analysis: Chinese Journal of Geophysics, 47, 886 - 891.
[18] Lu, W. K., and Mao, F., 2005, Adaptive multiple subtraction using independent component analysis: The Leading Edge, 24(3), 282 - 284.
[19] Luo, Y., Kelamis, P. G., and Wang, Y., 2003, Simultaneous inversion of multiples and primaries: inversion versus subtraction: The Leading Edge, 22(9), 814 - 818.
[20] Manin, M., and Spitz, S., 1995, 3D attenuation of targeted multiples with a pattern recognition technique: 57th Ann. Internat. Mtg., Eur. Assoc. of Geosc. and Eng., Extended Abstracts, B046.
[21] Morley, L., 1983, Predictive deconvolution in short-receiver space: Geophysics, 48(5), 515 - 531.
[22] Roberts, S., and Everson, R., 2001, Independent component analysis: Principle and practice: Cambridge University Press.
[23] Robinson, E. A., 1967, Principles of digital Wiener filtering: Geophysical Prospecting, 15(3), 311 - 333.
[24] Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166 - 1177.
[25] Wang, Y., 2003, Multiple subtraction using an expanded multichannel matching filter: Geophysics, 68(11), 346 - 354.
[26] Weglein, A. B., 1999, Multiple attenuation: an overview of recent advances and the road ahead: The Leading Edge, 18(1), 40 - 44.
[27] Wiggins, J. W., 1988, Attenuation of complex water-bottom multiples by wave equation based prediction and subtraction: Geophysics, 53(12), 1527 - 1539.
[28] Yilmaz, O., 1989, Velocity stack processing: Geophysical Prospecting, 37(4), 357 - 382.
[1] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
[2] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[3] 龙云, 韩立国, 韩利, 谭尘青. 小波域L1范数最优解匹配处理[J]. 应用地球物理, 2012, 9(4): 451-458.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司