APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 216-224    DOI: 10.1007/s11770-017-0620-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
煤层导水裂缝带电各向异性特征研究
苏本玉1,岳建华1
1. 中国矿业大学 资源与地球科学学院 应用地球物理研究所,徐州 221116
Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams
Su Ben-Yu1 and Yue Jian-Hua1
1. Institute of applied geophysics, The school resource and geosciences, CUMT, Xuzhou 221116, China.
 全文: PDF (859 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 水害是煤矿五大自然灾害之一,严重威胁着煤矿工人的生命安全,其主要原因是煤层导水裂缝带诱发透水事故。由于导水裂隙带电各向异性严重,利用传统的电阻率方法探测的电阻率信息将会导致错误的水文地质结论。本文以煤层导水裂缝带为地质基础,建立地电模型,研究煤层导水裂隙带电各向异性特征。分别讨论了裂隙带地层水电导率、基质孔隙度、基质电阻率、裂缝密度,裂缝表面粗糙度,围岩地层压力大小以及裂缝倾角的对导水裂隙带电各向异性的影响。通过数值模拟,定性分析了各因素对电各向异性的影响以及地表视电阻分布形态与导水裂隙带特征之间的关系,初步探讨了利用导水裂隙带的电各向异性研究裂缝走向以及倾向方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词煤层导水裂缝带   电各向异性   表面粗糙度   地层水电导率   围压     
Abstract: Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo–electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
Key wordswater-conducting fractured zones in coal seams   coalfield goaf   electrical anisotropy   surface roughness   formation water resistivity   formation pressure   
收稿日期: 2016-07-18;
基金资助:

本研究由江苏高校优势学科建设工程、中央高校基本业务基金(编号:2014QNA88)和国家自然基金(编号:41674133)联合资助。

引用本文:   
. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
 
[1] Brace, W. F., and Orange A. F., 1968, Electrical resistivity changes in saturationrocks during fracture and frictional sliding: J. Geophysics. Res., 73, 1433−1445.
[2] Brown, S. R., 1995, Simple mathematical model of a rough fracture: Journal of Geophysical Research, 100(B4), 5941−5952.
[3] Cheng, J. L., Li, F., Peng, S. P., et al., 2015, Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization.: Journal of Applied Geophysics, 123, 30−35.
[4] Chang, J. H., Yu, J. C., and Liu, Z. X., 2016, Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf: Applied Geophysics, 13(3), 539−552.
[5] Dong, N. G., Pan, L. Y., and Li, J. B., 2011, Talk about of control measures of major hazard sources: Shandong Coal Science and Technology, 1, 200−201.
[6] Keller, G. V., and Frischknecht, F. C.,1900, Electrical methods in geophysical prospecting: Pergamon Press, 190066.
[7] Li, D. C., Ge, B. T., and Hu, J. W., 1999, Predicted-mechanism and experiment of resistivity method for the coal mine: Coal Geology and Exploration, 27(6), 62−64.
[8] Li, J. M., 2005, Geoelectric field and exploration of electrical method: The Geological Publishing House, Beijing.
[9] Liu, S. D., Wu, R. X., Zhang, P. S., and Cao, Y., 2009, Three dimension parallel electric surveying and iIts applications in water disaster exploration in coal mines: Journal of China Coal society, 34(7), 927−932.
[10] Liu, T. M. and Qin, H. l., 2006, Economic analysis of safety accidents in China coal mining: Coal Mine Safety, Total (377), 70−72.
[11] Power, W. L., Tullis T. E., et al., 1987, Roughness of natural faultssurface: Geophysics Research Letter, 14, 29−32.
[12] Sui W. H., et al., 2015, Interactions of overburden failure zones due to multiple-seam mining using longwall caving: Bulletin of Engineering Geology and the Environment, 74(3), 1019−1035.
[13] Said, A. H., 1994, Electric study of fracture anisotropy at Falkenberg: Geophysics, 59(6), 881−888.
[14] Shen, J. S., et al., 2010, Analysis of the mechanism of the effects of secondary porosities on the cementation factor and saturation index in reservoir formation with vuggs and fractures: Well Logging Technology, 34(1), 9−15.
[15] Shen, J. S., et al., 2009, Study on the anisotropic characteristics of the electric response to fractures reservoir: Chinese Journal of Geophysics, 52(11), 2903−2912.
[16] Stesky, R. M., 1986, Electrical conductivity of brine saturated fractured rock:Geophysics, 51(8), 1585−1593.
[17] Yue, J. H., and Li, Z. D., 1997, Mine DC Electrical Methods and Application to Coal Floor Water Invasion Detecting: Journal of China University of Mining and Technology, 26(1), 94−98.
[18] Yin, C., and Hodges, G., 2003, Identification of Electrical Anisotropy from Helicopter EM Data. Symposium on the Application of Geophysics to Engineering and Environmental Problems, 419−431.
[19] Yan, S., Xue, G. Q., Qiu, W. Z., et al., 2016, Feasibility of central loop TEM method for prospecting multilayer water-filled goaf. Applied Geophysics, 13(4), 587−597.
[20] Yin, C., and Weidelt, P., 1999, Geoelectrical fields in a layered earth with arbitrary anisotropy: Geophysics, 64(2), 426−434.
[21] Zhao, G. M., Li, T. L., Xu, K. J., and Li, J. P., 2007, The study and application of well-surface resistivity method in the safety at coal field: Progress in Geophysics, 22(6), 1895−1899.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司