APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 225-235    DOI: 10.1007/s11770-017-0621-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用机械取样和浅地层剖面数据反演河底泥沙参数
李长征,杨勇,王锐,郑军
黄河水利科学研究院,郑州 450003
Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data
Li Chang-Zheng1, Yang Yong1, Wang Rui1, and Zheng Jun1
1. The Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 全文: PDF (799 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 河流动力学研究需要河底泥沙物性参数(孔隙度、渗透率和波速等)作为依据,机械取样和浅地层剖面探测是获取物性的重要途径。取样时的机械扰动使测试结果产生偏差,仅利用浅地层剖面数据获取河底特性有限,本文将两者结合起来开展反演研究。将取样测试的级配作为先验信息,进而根据Kozeny-Carman公式确定孔隙度和渗透率的关系。从浅地层剖面数据中提取了水-泥沙界面的声波反射系数。基于等效密度流模型,结合Kozeny-Carman公式和声波反射系数,提出了一种表层淤积泥沙参数反演方法。经过黄河库区试验,得到多个断面的密度和波速等参数,并获取泥沙物性参数的空间变化特征。对比发现,取样点的反演结果与测试结果较为一致,证明了本文提出泥沙参数反演方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词机械取样   河流泥沙   浅地层剖面   等效密度流   声学反演     
Abstract: The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny–Carman equation as prior information. The wave reflection coefficient of the water–silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny–Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.
Key wordsmechanical sampling   river sediment   subbottom profiling   density   inversion   
收稿日期: 2016-05-25;
基金资助:

本研究由水利部公益性行业专项(编号:201301024)和黄河水利科学研究院基本科研业务费专项(HKY-JBYW-2016-09和HKY-JBYW-2016-29)联合资助。

引用本文:   
. 利用机械取样和浅地层剖面数据反演河底泥沙参数[J]. 应用地球物理, 2017, 14(2): 225-235.
. Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 225-235.
 
[1] Bachman, R. T., 1985, Acoustic and physical property relationships in marine sediment: The Journal of the Acoustical Society of America, 78(2), 616−621.
[2] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐frequency range: The Journal of the Acoustical Society of America, 28(2), 168−178.
[3] Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Journal of the Acoustical Society of America, 28(2), 179−191.
[4] Chiu, L., Chang A., Lin, Y. T., and Liu, C. S., 2015, Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler: IEEE Journal of Oceanic Engineering, 40(1), 222−236.
[5] Chotiros, N. P., and Isakson, M. J., 2002, Normal incidence reflection loss from a sandy sediment: The Journal of the Acoustical Society of America, 112(5), 1831−1841.
[6] Hamilton, E. L., 1980, Geoacoustic modeling of the sea floor: The Journal of the Acoustical Society of America, 68(5), 1313−1340.
[7] Holland, C. W., and Brunson, B. A., 1988, The Biot-Stoll sediment model: An experimental assessment: The Journal of the Acoustical Society of America, 84(4), 1437−1443.
[8] Hovem, J. M., and Ingram, G. D., 1979, Viscous attenuation of sound in saturated sand:The Journal of the Acoustical Society of America, 66(6), 1807−1812.
[9] LeBlanc, L. R., Mayer, L., Rufino, M., Schock, S. G., and King, J., 1992, Marine sediment classification using the chirp sonar: The Journal of the Acoustical Society of America, 91(1), 107−115.
[10] Long, J. J., and Li, G. X., 2015, Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments: ACTA ACUSTICA, 40(3), 462−468.
[11] Lotter, A. F., Merkt, J., and Sturm, M., 1997, Differential sedimentation versus coring artifacts: a comparison of two widely used piston-coring methods:Journal of Paleolimnology, 18(1), 75−85.
[12] Panda, S., LeBlanc, L. R., and Schock, S. G., 1994, Sediment classification based on impedance and attenuation estimation: The Journal of the Acoustical Society of America, 96(5), 3022−3035.
[13] Qin, H. W., Chen, Y., Gu, L. Y., 2007, Research on disturbing theory of deep-sea sediment sampling: ACTA OCEANOLOGICA SINICA, 29(2), 92−97.
[14] Qin, H. W., Chen, Y., Gu, L. Y., Li, S. L., Tao, J., and Geng, X. Q., 2009, The development of gas-tight sampling techniques: JOURNAL OF TROPICAL OCEANOGRAPHY, 28(4), 42−48.
[15] Schock, S. G., 2004, A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data: IEEE Journal of Oceanic Engineering, 29(4),1200−1217.
[16] Schrottke, K., Becker, M., Bartholomä, A., Flemming, B. W., and Hebbeln, D., 2006, Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler: Geo-Marine Letters, 26(3), 185−198.
[17] Stevenson, I. R., McCann C., and Runciman, P. B., 2002, An attenuation-based sediment classification technique using chirp sub-bottom profiler data and laboratory acoustic analysis: Marine Geophysical Researches, 23(4), 277−298.
[18] Stoll, R. D., 1977, Acoustic waves in ocean sediments: Geophysics, 42(4), 715−725.
[19] Stoll, R. D., 1980, Theoretical aspects of sound transmission in sediments: The Journal of the Acoustical Society of America, 68(5), 1341−1350.
[20] Turgut, A., and Yamamoto, T., 1990, Measurements of acoustic wave velocities and attenuation in marine sediments: The Journal of the Acoustical Society of America, 87(6), 2376−2383.
[21] Williams, K. L., 2001, An effective density fluid model for acoustic propagation in sediments derived from Biot theory: The Journal of the Acoustical Society of America, 110(5), 2276−2281.
[22] Zou, D. P., Wu, B. H., Lu, B., Zeng, J. Y., Lin, Q., and Long, J. J., 2008, A study on correction of acoustic velocity in seafloor sediments measured in laboratory: JOU RNAL OF TROPICAL OCEANOGRAPHY, 27(1), 27−31.
[23] Zheng, J., Tang, H., Guo,W. K., Zhang, X., and Fan, T., 2014, Preliminary Analysis on the Physical Characteristics of the Deep Sediment in Xiaolangdi Reservoir: YELLOW RIVER, 36(10), 23−25.
[1] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司