APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 205-215    DOI: 10.1007/s11770-017-0614-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用
闫建平1,2,何旭2,耿斌3,胡钦红4,冯春珍5,寇小攀5,李兴文5
1. 油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都 610500
2. 西南石油大学地球科学与技术学院,四川成都 610500
3. 中石化胜利油田勘探开发研究院,山东东营 257015
4. 德克萨斯大学阿灵顿分校,美国 76019
5. 中国石油集团测井有限公司长庆事业部,陕西西安 718500
Nuclear magnetic resonance T2 spectrum: multifractal characteristics and pore structure evaluation
Yan Jian-Ping1,2, He Xu2, Geng Bin3, Hu Qin-Hong4, Feng Chun-Zhen5, Kou Xiao-Pan5, and Li Xing-Wen5
1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China.
2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
3. Institute of Exploration and Development, ShengLi Oil Field, SINOPEC, Dongying 257015, China.
4. Department of Earth and Environmental Science, University of Texas at Arlington, Texas, 76019, USA.
5. Changqing Division of PetroChina Logging Company, Xi’an 718500, China.
 全文: PDF (1243 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 孔隙结构特征及类型划分对低渗透储层勘探开发至关重要,基于多重分形理论与核磁共振实验,对东营凹陷南坡沙河街组沙四段(ES4)复杂低渗透砂岩进行孔隙结构研究。首先,根据岩心物性、铸体薄片、压汞等资料所反映的孔隙结构参数差异,将研究区的岩石孔隙结构类型划分了3大类5小类;然后,针对不同类型岩石的核磁共振T2谱进行插值并计算其对数坐标下的一维、三维分形维数以及多重分形谱,并提取多重分形参数奇异性强度α、分布稠密度f (α),结果显示孔隙结构类型不同,维数尤其是多重分形参数值差异明显,孔隙结构好,其α、f (α)偏向高值,以此划分孔隙结构类型与压汞、薄片分析结果基本一致;最后,将该方法应用到核磁共振测井剖面上,应用效果较好,表明多重分形是核磁共振T2谱的一种属性,利用核磁测井T2谱多重分形特征及参数能够连续较好地评价低渗透砂岩孔隙结构类型与预测有效储层。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词核磁共振T2谱   多重分形   插值   孔隙结构   低渗透砂岩     
Abstract: Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (ES4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters α (intensity of singularity) and f(α) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with α and f(α). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.
Key wordsNMR T2 spectrum   multifractal   interpolation   pore structure   permeability   sandstone   
收稿日期: 2016-07-14;
基金资助:

本研究由国家自然科学基金项目“页岩气储层微观结构及岩石物理响应数值模拟研究”(编号:41202110)、四川省应用基础研究计划项目“泥页岩地层周期及高分辨率沉积旋回测井识别研究”(编号:2015JY0200)、天然气地质四川省重点实验室开放基金“湖相泥页岩地层岩相测井定量识别方法研究”(编号:2015trqdz07)及胜利油田低渗透示范基地项目“致密砂岩储层含油饱和度模型测试”(编号:30200018-15-FW1907-0121)联合资助。

引用本文:   
. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
. Nuclear magnetic resonance T2 spectrum: multifractal characteristics and pore structure evaluation[J]. APPLIED GEOPHYSICS, 2017, 14(2): 205-215.
 
[1] Avnir, D., Farin D., and Pfeifer P., 1984, Molecular fractal surfaces: Nature, 308(5956), 261-263.
[2] Chhabra, A., and Jensen, R. V., 1989, Direct determination of the f(α) singularity spectrum: Physical Review Letters, 62(12), 1327-1330.
[3] Falconer, K. J., 1985, The geometry of fractal sets: Cambridge, England.
[4] Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015, Pore structure characterization and classification using multifractal theoryAn application in Santanghu basin of western China: Journal of Petroleum Science and Engineering, 127, 297-304.
[5] Hansen, J. P., and Skjeltorp, A. T., 1988, Fractal pore space and rock permeability implications: Physical Review B, 38(4), 2635-2638.
[6] Angulo, R. F., Alvaraso, V., and Gonzalea, H., 1992, Fractal dimensions from mercury intrusion capillary tests: The Second Latin American Petroleum Engineering Conference, II LAPEC, of the Society of Petroleum Engineers, SPE 23695, 255-263.
[7] He, Y. D., Mao,Z. Q., Xiao, L. Z., et al., 2005, An improved method of using NMR T2 distribution to evaluate pore size distribution: Chinese Journal of
[8] Avnir, D., Farin D., and Pfeifer P., 1984, Molecular fractal surfaces: Nature, 308(5956), 261-263.
[9] Hu, F. L, Zhou, C., Li, C. L., et al., 2016, Water spectrum method of NMR logging for identifying fluids: Petroleum Exploration and Development, 43(2), 244-252.
[10] Chhabra, A., and Jensen, R. V., 1989, Direct determination of the f(α) singularity spectrum: Physical Review Letters, 62(12), 1327-1330.
[11] Katz, A. J., and Thompson, A. H., 1985, Fractal sandstone pores: Implications for conductivity and pore formation: Physical Review Letters, 54(12), 1325-1328.
[12] Falconer, K. J., 1985, The geometry of fractal sets: Cambridge, England.
[13] Krohn, C. E., 1988, Sandstone fractal and euclidean pore volume distributions: Journal of Geophysical Research-Solid Earth and Planets, 93(B4), 3286-3296.
[14] Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015, Pore structure characterization and classification using multifractal theoryAn application in Santanghu basin of western China: Journal of Petroleum Science and Engineering, 127, 297-304.
[15] Li, J. H., and Zheng B., 2015, A New method for fractal characterization of microscopic pores and its application in shale reservoirs: Natural Gas Industry, 2015, 35(5), 52-59.
[16] Mandelbrot, B. B., 1977, Fractals: Form, Chance and Dimension, San Francisco, W. H. Freeman.
[17] Pape, H., Riepe, L., and Schopper, J. R., 1982, A pigeon-holemodel for relating permeability to specific surface: The Log Analyst, 23(1), 5-13.
[18] Hansen, J. P., and Skjeltorp, A. T., 1988, Fractal pore space and rock permeability implications: Physical Review B, 38(4), 2635-2638.
[19] He, Y. D., Mao,Z. Q., Xiao, L. Z., et al., 2005, An improved method of using NMR T2 distribution to evaluate pore size distribution: Chinese Journal of
[20] Peng, R. D., Yang Y. C., Ju, Y., et al., 2011, Computation of fractal dimension of rock pores based on gray CT images: Chinese Science Bulletin, 56(26), 2256-2266.
[21] Pfeifer, P., and Avnir, D., 1983, Chemistry in noninteger dimensions between two and three, fractal theory of heterogenous surface: Journal of Chemical Physics, 79(7), 3558-3565.
[22] Subhakar, D., and Chandrasekhar, E., 2016, Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data: Physica A, 445(1), 57-65.
[23] Tan, M. J., Mao, K. Y., Song, X. D., et al., 2015, NMR petrophsical interpretation method of gas shale on core NMR experiment: Journal of Petroleum Science and Engineering, 136, 100-111.
[24] Tsakiroglou, C. D., and Fleury, M., 1999, Resistivity index of fractional wettability porous media: Journal of Petroleum Science and Engineering, 22, 253-274.
[25] Volokitin, Y., Looyestigin, W. J., and Slijkerman, W. F. J., et al., 2001, A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data: Petrophysics, 42(4), 334-343.
[26] Hu, F. L, Zhou, C., Li, C. L., et al., 2016, Water spectrum method of NMR logging for identifying fluids: Petroleum Exploration and Development, 43(2), 244-252.
[27] Wang, K.W., and Li, N., 2008, Numerical simulation of rock pore throat structure effects on NMR T2 distribution, Applied Geophysics, 5(2), 86-91.
[28] Wen, H. M., 2003, Study of Fractal Log Interpretation Theory and Method: PhD Thesis, Chengdu University of Technology, Chengdu.
[29] Xiao, L. Z., 2007, Frontiers Investigation in Well Logging Science: Petroleum Industry Press, Beijing.
[30] Xiao, L. Z., and Zhang, W., 2008, A new method to construct reservoir capillary pressure curves using NMR log data and its application: Applied Geophysics, 5(2), 92-98.
[31] Xie, S. Y., He, Z. L., Qiang, Y. X., et al., 2015, Multifractality of 3D pore structures of carbonate rocks based on CT images: Journal of Geology, 39(1), 4653.
[32] Xu, Z. X., 2014, Heterogeneity of shale reservoirs based on CT images: Lithologic Reservoirs, 26(6), 46-49.
[33] Yun, H. Y., Zhao, W. J., Liu, B. K., et al., 2002, Researching Rock Pore Structure with T2 Distribution: Well Logging Technology, 26(1), 18-21.
[34] Katz, A. J., and Thompson, A. H., 1985, Fractal sandstone pores: Implications for conductivity and pore formation: Physical Review Letters, 54(12), 1325-1328.
[35] Krohn, C. E., 1988, Sandstone fractal and euclidean pore volume distributions: Journal of Geophysical Research-Solid Earth and Planets, 93(B4), 3286-3296.
[36] Li, J. H., and Zheng B., 2015, A New method for fractal characterization of microscopic pores and its application in shale reservoirs: Natural Gas Industry, 2015, 35(5), 52-59.
[37] Mandelbrot, B. B., 1977, Fractals: Form, Chance and Dimension, San Francisco, W. H. Freeman.
[38] Pape, H., Riepe, L., and Schopper, J. R., 1982, A pigeon-holemodel for relating permeability to specific surface: The Log Analyst, 23(1), 5-13.
[39] Peng, R. D., Yang Y. C., Ju, Y., et al., 2011, Computation of fractal dimension of rock pores based on gray CT images: Chinese Science Bulletin, 56(26), 2256-2266.
[40] Pfeifer, P., and Avnir, D., 1983, Chemistry in noninteger dimensions between two and three, fractal theory of heterogenous surface: Journal of Chemical Physics, 79(7), 3558-3565.
[41] Subhakar, D., and Chandrasekhar, E., 2016, Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data: Physica A, 445(1), 57-65.
[42] Tan, M. J., Mao, K. Y., Song, X. D., et al., 2015, NMR petrophsical interpretation method of gas shale on core NMR experiment: Journal of Petroleum Science and Engineering, 136, 100-111.
[43] Tsakiroglou, C. D., and Fleury, M., 1999, Resistivity index of fractional wettability porous media: Journal of Petroleum Science and Engineering, 22, 253-274.
[44] Volokitin, Y., Looyestigin, W. J., and Slijkerman, W. F. J., et al., 2001, A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data: Petrophysics, 42(4), 334-343.
[45] Wang, K.W., and Li, N., 2008, Numerical simulation of rock pore throat structure effects on NMR T2 distribution, Applied Geophysics, 5(2), 86-91.
[46] Wen, H. M., 2003, Study of Fractal Log Interpretation Theory and Method: PhD Thesis, Chengdu University of Technology, Chengdu.
[47] Zhang, C. M., Chen, Z. B., Zhang, Z. S., et al., 2007, Fractal Characteristics of Reservoir Rock Pore Structure based on NMR T2 Distribution: Journal of Oil and Gas Technology, 29(4), 80-86.
[48] Xiao, L. Z., 2007, Frontiers Investigation in Well Logging Science: Petroleum Industry Press, Beijing.
[49] Xiao, L. Z., and Zhang, W., 2008, A new method to construct reservoir capillary pressure curves using NMR log data and its application: Applied Geophysics, 5(2), 92-98.
[50] Xie, S. Y., He, Z. L., Qiang, Y. X., et al., 2015, Multifractality of 3D pore structures of carbonate rocks based on CT images: Journal of Geology, 39(1), 4653.
[51] Zhou, L., and Kang, Z., 2016, Fractal characterization of pores in shales using NMR: A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze, Platform, Southwest China: Journal of Natural Gas Science and Engineering, 35(Part A), 860-872.
[52] Xu, Z. X., 2014, Heterogeneity of shale reservoirs based on CT images: Lithologic Reservoirs, 26(6), 46-49.
[53] Yun, H. Y., Zhao, W. J., Liu, B. K., et al., 2002, Researching Rock Pore Structure with T2 Distribution: Well Logging Technology, 26(1), 18-21.
[54] Zhou, S., Liu, D., M., Cai, Y. D., et al., 2016, Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method: Fuel, 181, 218-226.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[3] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[4] 邓世武,贾雨,姚兴苗,刘致宁. 多类型断层条件下的复杂地层曲面的重构方法[J]. 应用地球物理, 2017, 14(2): 195-204.
[5] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[6] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[7] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[8] 边环玲, 关雎, 毛志强, 鞠晓东, 韩桂琴. 孔隙结构对储层电性及测井解释评价的影响[J]. 应用地球物理, 2014, 11(4): 374-383.
[9] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[10] 勾福岩, 刘财, 刘洋, 冯晅, 崔芳姿. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
[11] 曹云梦, 李志伟, 韦建超, 占文俊, 朱建军, 汪长城. 一种求解地球物理参数各向异性的新方法——单位步长变异增量法[J]. 应用地球物理, 2014, 11(3): 340-349.
[12] 邹友龙, 胡法龙, 周灿灿, 李潮流, 李长喜, Keh-Jim Dunn. 径向基函数插值方法分析[J]. 应用地球物理, 2013, 10(4): 397-410.
[13] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
[14] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[15] 郭书娟, 李振春, 仝兆岐, 马方正, 刘建辉. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司