APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 105-114    DOI: 10.1007/s11770-017-0601-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
孔隙介质中面波有限差分模拟及应力镜像条件
张煜1,2,3,平萍4,张双喜1,2,3
1. 武汉大学测绘学院,武汉 430079
2. 地球空间环境与大地测量教育部重点实验室,武汉 430079
3. 武汉大学地球空间信息协同创新中心,武汉 430079
4. 中国科学院测量与地球物理研究所,大地测量与地球动力学国家重点实验室,武汉 430077
Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions
Zhang Yu1,2,3, Ping Ping4, and Zhang Shuang-Xi1,2,3
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China.
2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China.
3. Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan 430079, China.
4. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China.
 全文: PDF (736 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波沿自由表面传播P波和S波干涉会产生面波现象。因此,地震波数值模拟中需要精确地处理自由表面边界以获取面波传播的数值解。本文提出了一种基于动态孔弹性理论包含自由表面边界处理的时空域交错网格有限差分数值计算方法。针对自由表面,推广弹性介质中的传统应力镜像自由边界处理方法,提出一种新的描述孔隙介质固体和流体自由边界特征适用于面波模拟的应力镜像法。自由表面所在网格节点上的相应镜像的处理就能获得稳定精确的面波数值解。数值模拟得到的第一类Rayleigh波的结果表明该算法在相应的弹性介质中一样的网格剖分下就可获得保证精度的稳定解。数值模拟的例子反映了本文所述方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词面波   孔隙弹性   有限差分   频散     
Abstract: During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.
Key wordsSurface-wave   poroelastic   finite-difference   dispersion   
收稿日期: 2016-05-04;
基金资助:

本研究由国家自然科学基金(编号:41304077)、国家重点基础研究计划(973计划)(编号:2013CB 733303)和中国博士后科学基金(编号:2014T70740)联合资助。

引用本文:   
. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
. Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions[J]. APPLIED GEOPHYSICS, 2017, 14(1): 105-114.
 
[1] Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: Journal of Applied Physics, 33, 1482-1498.
[2] Blanc, E., Chiavassa, G., and Lombard, B., 2014, Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach: Journal of Computational Physics, 275, 118−142.
[3] Bohlen, T., and Saenger, E. H., 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves: Geophysics, 71(4), T109−T115.
[4] Bouklas, N., Landis, C. M., and Huang, R., 2015, A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels: Journal of the Mechanics and Physics of Solids, 79, 21−43.
[5] Carcione, J. M., 2007, Wave fields in real media: wave propagation in anisotropic, anelastic, porous, and electromagnetic media, 2nd ed: Elsiever, Amsterdam.
[6] Carcione, J. M., and Helle, H. B., 1999, Numerical solution of the poroviscoelastic wave equation on a staggered mesh: Journal of Computational Physics, 154, 520-527.
[7] Carcione, J. M., and Quiroga-Goode, G., 1995, Some aspects of the physics and numerical modelling of Biot compressional waves: Journal of Computational Acoustics, 3(4), 261-280.
[8] Itza, R., Iturraran-Viveros, U., and Parra, J. O., 2016, Optimal implicit 2-D finite differences to model wave propagation in poroelastic media: Geophysical Journal International, 206, 1111−1125.
[9] Kristek, J., Moczo, P., and Archuleta, R. J., 2002, Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes: Studia Geophysica et Geodaetica, 46, 355-381.
[10] Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53, 1425-1436.
[11] Liu, X., Yin, X., and Li, H., 2014, Optimal variable-grid finite-difference modeling for porous media: Journal of Geophysics and Engineering, 11, 065011.
[12] Liu, Y., and Sen, M., 2009, A new time-space domain high-order finite difference method for the acoustic wave equation: Journal of Computational Physics, 228, 8779−8806.
[13] Liu, Y., and Sen, M. K., 2011, Scalar wave equation modeling with time- space domain dispersion-relation-based staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101, 141−159.
[14] Luo, Y., Xia, J., Miller, R. D., Xu, Y., Liu, J., and Liu, Q., 2008, Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform: Pure and Applied Geophysics, 165, 903−922.
[15] Masson, Y. J., and Pride, S. R., 2007, Poroelastic finite-difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity: Journal of Geophysical Research, 112, B03204.
[16] Masson, Y. J., Pride S. R., and Nihei, K. T., 2006, Finite difference modeling of Biot’s poroelastic equations at seismic frequencies: Journal of Geophysical Research, 111, B10305.
[17] Mittet, R., 2002, Free-surface boundary conditions for elastic staggered-grid modeling schemes: Geophysics, 67, 1616-1623.
[18] Moczo, P., Kristek, J., Vavry?uk, V., Archuleta, R. J., and Halada, L., 2002, 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities: Bulletin of the Seismological Society of America, 92, 3042-3066.
[19] Ouml;zdenvar, T., and McMechan, G. A., 1997, Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations: Geophysical Prospecting, 45, 403-420.
[20] Plona, T. J., 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies: Applied Physics Letters, 36, 259−261.
[21] Pride, S. R., and Berryman, J. G., 1998, Connecting theory to experiment in poroelasticity: Journal of the Mechanics and Physics of Solids, 46, 719-747.
[22] Pride, S. R., Gangi, A. F., and Morgan, F. D., 1992, Deriving the equations of motion for porous isotropic media: Journal of Acoustical Society of America, 92, 3278-3290.
[23] Robertsson, J. O. A., 1996, A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography: Geophysics, 61, 1921-1934.
[24] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51, 889-901.
[25] Xu, Y., 2015, Surface technology and subsurface image, Chinese University of Geosciences Press, Wuhan.
[26] Xu, Y., Xia, J., and Miller, R. D., 2007, Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach: Geophysics, 72, SM147-SM153.
[27] Yang, Q., and Mao, W., 2017, Simulation of seismic wave propagation in 2-D poroelastic media using weighted-averaging finite difference stencils in the frequency-space domain: Geophysical Journal International, 208, 148−161.
[28] Zeng, C., Xia, J., Miller, R. D., and Tsoflias, G. P., 2012, An improved vacuum formulation for 2D finite-difference modeling of Rayleigh waves including surface topography and internal discontinuities: Geophysics, 77, T1−T9.
[29] Zhang, Y., Ping, P., Deng, P., Zhou, H., and Zhang, S., 2015, A free surface formulation for finite difference modeling of surface wave in porous media: 85th Annual International Meeting, SEG expanded abstract, 2406−2411.
[30] Zhang, Y., Xu, Y., and Xia, J., 2011, Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration seismic frequency band: Geophysical Journal International, 182, 870−888.
[31] Zhang, Y., Xu, Y., and Xia, J., 2012, Wave fields and spectra of Rayleigh waves in poroelastic media in the exploration seismic frequency band: Advances in Water Resources, 49, 62-71.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[3] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[4] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[5] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[6] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[7] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[8] 王保利. 基于多道约束的槽波波至时间自动拾取方法研究[J]. 应用地球物理, 2018, 15(1): 118-124.
[9] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[10] 袁焕,胡自多,刘朝,马坚伟. 基于经验曲波变换的面波压制方法[J]. 应用地球物理, 2018, 15(1): 111-117.
[11] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[12] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[13] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司