APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 96-104    DOI: 10.1007/s11770-017-0595-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于小波分频与径向道变换的联合压制面波方法
王万里,杨午阳,魏新建,何欣
中国石油勘探开发研究院西北分院,甘肃兰州 730020
Ground roll wave suppression based on wavelet frequency division and radial trace transform
Wang Wan-Li1, Yang Wu-Yang1, Wei Xin-Jian1, and He Xin1
This research was supported by the National Science and Technology Major Project (No. 2011ZX05007-006), the 973 Program of China (No. 2013CB228604), and the major Project of Petrochina (No. 2014B-0610).
 全文: PDF (2417 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 面波是地震记录上严重的干扰波。基于小波变换的面波衰减方法考虑了面波频率低的特点,但是当有效信号和面波干扰存在频率重叠时,其压制效果不理想。径向道变换考虑了面波与有效信号视速度差异,有利于去噪,但是在去除面波的同时也会损害有效信号的低频分量。本文根据面波和有效信号在视速度以及小波域能量的差别,将小波变换的局部分析能力与径向道变换的去噪优势相结合,提出了基于小波分频与径向道变换的联合面波压制方法。首先应用小波变换,将地震记录分解为不同频段,对出现面波的频段作径向道变换,然后再作低切滤波处理,最后利用径向道反变换后的记录与其他频段的记录进行小波重构得到去除面波的记录。两种方法的联合使用提高了小波分频去除面波的能力,同时也较好的保护了有效信号。通过模型数据实验分析和实际资料数据处理的结果表明,本文提出的方法具有较强的去噪能力和良好的保幅性能。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词面波衰减   小波分频   径向道变换   联合去噪     
Abstract: Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.
Key wordsground roll wave   wavelet frequency division   radial trace transform   denoising   
收稿日期: 2016-11-17;
基金资助:

本研究由国家科技重大专项课题(编号:2011ZX05007-006)和国家973专项(编号:2013CB228604)和中国石油股份科技专项(编号:2014B-0610)联合资助。

引用本文:   
. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
. Ground roll wave suppression based on wavelet frequency division and radial trace transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 96-104.
 
[1] Brown, M., and Claerbout, J., 2000, A pseudo-unitary implementation of the Radial Trace Transform: SEG Technical Program Expanded Abstracts 2000, 462−465.
[2] Claerbout, J. F., 1975, Slant-stacks and radial traces: Stanford Exploration Project Report, 5, 1−12.
[3] Claerbout, J. F., 1983, Ground roll and radial traces: Stanford Exploration Project Report, 35, 43−54.
[4] Deighan, A. J., and Watts, D. R., 1997, Ground-roll suppression using the wavelet transform: Geophysics, 62(6), 1896−1903.
[5] De Meersman, K., and Kendall, R., 2005, A complex SVD-polarization filter for ground roll attenuation on multi-component data: 67th Conference and Exhibition, EAGE, Extended Abstracts, B019.
[6] Fomel, S., 2001, Three-dimensional seismic data regularization: PhD dissertation, Stanford University.
[7] Henley, D. C., 1999a, The radial transform: an effective domain for coherent noise attenuation and wavefield separation: SEG Technical Program Expanded Abstracts 1999, 1204−1207.
[8] Henley, D. C., 1999b, Coherent noise attenuation in radial trace domain: introduction and demonstration, CREWES Research report 11, 455−491.
[9] Henley, D. C., 2003, Coherent noise attennuation in the radial trace domain: Geophysics, 68(4), 1408−1416.
[10] Lu, J., Wang, Y., and Yang, C. Y., 2010, Instantaneous polarization filtering focused on suppression of surface wave: Applied Geophysics, 7(1), 88−97.
[11] Li, Q. Z., 1993, The way to obtain a better resolution in seismic processing: Petrolum Industry Press, Beijing, 107−112.
[12] Mallat, S., 1989, A theory for multiresolution signal decomposition: the wavelet representation: IEEE Transaction on Pattern Analysis and Machine Intelligence, 11(4), 674−693.
[13] Mallat, S., 1991, Zero-crossing of a wavelet transform: IEEE Trans on Information Theory, 37(4), 1019−1033.
[14] Nguyen, M. Q., and Mars, J., 1999, Filtering surface waves using 2-D discrete wavelet transform: SEG Technical Program Expanded Abstracts 1999, 1228−1230.
[15] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest views of the sparse Randon transform: Geophysics, 68(1), 386−399.
[16] Tan, Y. Y., He, C., Wang, Y. D., and Zhao, Z., 2013, Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform: Applied Geophysics, 10(3), 279−294.
[17] Xu, X. H., Qu, G. Z., Zhang, Y., Bi, Y. Y., and Wang, J. J., 2016, Ground roll separation of seismic data based on morphological component analysis in two dimensional domain: Applied Geophysics, 13(1), 116−126.
[18] Yuan, S. Y., Wang, S. X., Sun, W. J., Miao, L. N., and Li, Z. H., 2014, Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation: Exploration Geoghysics, 45(2), 94−104.
[19] Zhu, W. H., Kelamis, P. G., and Liu, Q. L., 2004, Linear noise attenuation using local radial trace median filtering: The Leading Edge, 23(8), 728−737.
[1] 李芳, 王守东, 陈小宏, 刘国昌, 郑强. 径向道域变步长采样叠前非稳态反褶积处理方法研究[J]. 应用地球物理, 2013, 10(4): 423-432.
[2] 刘国昌, 陈小宏, 李景叶, 杜婧, 宋家文. 基于非稳态多项式拟合的地震噪声衰减方法研究[J]. 应用地球物理, 2011, 8(1): 18-26.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司