APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 115-124    DOI: 10.1007/s11770-017-0596-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
余弦修正二项式窗的交错网格有限差分地震正演方法
王建1,孟小红1,刘洪2,郑婉秋1,贵生2
1. 中国地质大学(北京),北京 100083;
2. 中国科学院地质与地球物理研究所,中国科学院油气资源研究重点实验室,北京 100049
Cosine-modulated window function-based staggered-grid finite-difference forward modeling
Wang Jian1, Meng Xiao-Hong1, Liu Hong2, Zheng Wan-Qiu1, and Gui Sheng2
1. School of Geophysics and Information Engineering, China University of Geosciences, Beijing 100083, China.
2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (869 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 交错网格有限差分方法被广泛地应用于地震波场正演模拟,但是震源主频升高和网格间距增大会带来计算机时级数增加和严重的数值频散现象,甚至这种频散会使目标成像或反演结果呈现假象。为了降低频散和提高效率,我们提出余弦修正二项式窗函数(CMBWF)优化交错网格有限差分正演方法,在修正过程中引入修正范围和修正次数参数。通过调节修正参数可以改善二项式窗的主瓣宽度和旁瓣衰减,不仅实现了更大的截断谱范围,而且保证了截断的精度。数值模拟表明,基于余弦修正二项式窗方法较泰勒级数展开方法有着更高的模拟精度,可以更好的控制数值频散和计算效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词弹性波   交错网格   窗函数   余弦修正     
Abstract: The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.
Key wordsElastic wave   staggered grid   window function   cosine modulate   
收稿日期: 2016-03-09;
基金资助:

本研究由国家重大科研装备研制项目(编号:ZDYZ2012-1-02-04)和国家自然科学基金(编号:41474106)联合资助。

引用本文:   
. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
. Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
 
[1] Alterman, Z., and Karal, F. C., 1968, Propagation of seismic wave in layered media by finite difference methods: Bulletin of Seismological Society of America, 58, 367−398.
[2] Carcione, J. M., Kosloff, D. D., Behle, A., and Seriani, G., 1992, A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media: Geophysics, 57, 1593−1607.
[3] Chu, C. L., and Stoffa, P. L., 2012, Determination of finite-difference weights using scaled binomial windows: Geophysics, 77, W17−W26.
[4] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51, 54−66.
[5] Diniz, P. S. R., Da Silva, E. A. B., and Netto, S. L., 2012, Digital signal processing system analysis and design: China Machine Press, Beijing.
[6] Fornberg, B., 1987, The pseudo spectral method: Comparisons with finite differences for the elastic wave equation: Geophysics, 52, 483−501.
[7] Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods: Geophysics, 46, 854−859.
[8] Igel, H., Mora, P., and Riollet, B., 1995, Anisotropic wave propagation through finite-difference grids: Geophysics, 60(4), 1203−1216.
[9] Kelly, K. R., Ward, R. W., Treitel, S., et al., 1976, Synthetic seismograms: A finite-difference approach: Geophysics, 41(1), 2−27.
[10] Kosloff, D. D., and Baysal, E., 1982, Forward modeling by a Fourier method: Geophysics, 47(10), 1402−1412.
[11] Liu, Y., and Sen, M. K., 2009, A new time-space domain high-order finite-different method for the acoustic wave equation: Journal of Computational Physics, 228, 8779-8806.
[12] Liu, Y., and Sen, M. K., 2010, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75, A11-A17.
[13] Li, Z., Zhang, H., and Liu, Q., 2007, Elastic wave staggered grid high-order finite difference method for numerical simulation of wavefield separation: Oil Geophysical Prospecting, 42(5), 510-515.
[14] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49, 533−549.
[15] Saenger, E. H., and Shapiro, S., 2002, An effective velocities in fractured media; A numerical study using the rotated staggered finite- difference grid: Geophysical Prospecting, 50, 183−194.
[16] Saenger, E. H., and Thomas, B., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[17] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity stress finite difference method: Geophysics, 51, 889-901.
[18] Weiss, R. M., and Shragge, J., 2013, Solving 3D anisotropic elastic wave equations on parallel GPU devices: Geophysics, 78, F7-F15.
[19] Yan, H., and Liu, Y., 2013a, Visco-acoustic pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61, 941-954.
[20] Yan, H., and Liu, Y., 2013b, Pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method in acoustic VTI medium: Journal of Geophysics and Engineering, 10, 1-10.
[21] Yang, L., Yan, H. Y., and Liu, H., 2014, Least squares staggered-grid finite-difference for elastic wave modeling: Exploration Geophysics, 45, 255-260.
[22] Zhao, J. G., and Shi, R. Q., 2013, A perfectly matched layer absorbing boundary condition for the finite-element time-domain modeling of elastic wave equation: Applied Geophysics, 10(3), 323−336.
[23] Zhao, J. G., Shi, R. Q., Chen, J. Y., et al., 2014, An matched Z-transform perfectly matched layer absorbing boundary in the numerical modeling of viscoacoustic wave equations: Chinese Journal of Geophysics (in Chinese), 57(4), 1284−1291.
[24] Zhou, B., and Greenhalgh, S. A., 1992, Seismic scalar wave equation modeling by a convolutional differentiator: Bulletin of the Seismological Society of America, 82(1), 289−303.
[1] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[2] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[3] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[6] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[7] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[8] 黄建平, 曲英铭, 李庆洋, 李振春, 李国磊, 步长城. 基于时空双变网格的起伏地表变坐标系正演模拟方法[J]. 应用地球物理, 2015, 12(1): 101-110.
[9] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[10] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[11] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[12] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[13] 段玉婷, 胡天跃, 姚逢昌, 张研. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
[14] 秦臻, 卢明辉, 郑晓东, 姚姚, 张才, 宋建勇. 弹性波正演模拟中改进的非分裂式PML实现方法[J]. 应用地球物理, 2009, 6(2): 113-121.
[15] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司