APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 73-86    DOI: 10.1007/s11770-017-0599-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法
李闯1,黄建平1,李振春1,王蓉蓉2
1. 中国石油大学(华东)地球科学与技术学院,青岛 266580
2. 海信(山东)冰箱有限公司,青岛 266580
Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint
Li Chuang1, Huang Jian-Ping1, Li Zhen-Chun1, and Wang Rong-Rong2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Hisense (Shandong) Refrigerator Co. Ltd, Hisense, Qingdao 266580, Shandong, China.
 全文: PDF (1015 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 最小二乘偏移能够压制不规则地震数据偏移时产生的偏移假象,但存在计算量巨大、收敛速度缓慢等问题。为了快速地压制偏移噪音,发展了基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法(Plane-wave prestack least-squares reverse time migration, PLSRTM)。一方面,通过奇异值谱分析(Singular spectrum analysis, SSA)方法对角度域共成像点道集(Take-Off Angle Domain Common-Image Gathers, TADCIGs)进行预处理,以压制偏移假象,同时引入随机奇异值分解减小SSA的计算量。另一方面,由于偏移速度不准确时叠加成像结果不能有效地压制偏移噪音,将相邻角度平面波偏移结果的差异作为正则化约束加入误差泛函,以改善这一问题。对Marmousi模型数据的成像测试结果表明该方法能够快速压制平面波道集及不规则地震数据偏移产生的偏移假象,改善PLSRTM的成像质量;当偏移速度不准确时,该方法能够得到偏移噪音更少、构造更加连续的成像结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词最小二乘偏移   平面波   不规则地震数据   奇异值谱分析   共成像点道集     
Abstract: Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.
Key wordsLeast squares migration   plane wave   irregular seismic data   singular spectrum analysis   common-image gathers   
收稿日期: 2016-08-13;
基金资助:

本研究由国家科技重大专项(编号:2016ZX05014-001-008)、国家“973”课题(编号:2014CB239006)、国家自然科学基金(编号:41104069和41274124)、中国石化地球物理重点实验室开放基金(编号:33550006-15-FW2099-0033)和中央高校基本科研业务费专项资金(编号:16CX06046A)联合资助。

引用本文:   
. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
. Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint[J]. APPLIED GEOPHYSICS, 2017, 14(1): 73-86.
 
[1] Chemingui, N., van Borselen, R., and Orlovich, M., 2007, 3D plane-wave migration of wide-azimuth data: 77th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2195−2199.
[2] Chen, Y., Yuan, J., Zu, S., et al., 2015, Seismic imaging of simultaneous-source data using constrained least-squares reverse time migration: Journal of Applied Geophysics, 114, 32−35.
[3] Dai, W., Fowler, P., and Schuster, G. T., 2012, Multi-source least-squares reverse time migration: Geophysical Prospecting, 60(4), 681−695.
[4] Dai, W., and Schuster, G. T., 2013, Plane-wave least-squares reverse-time migration: Geophysics, 78(4), 5165−5177.
[5] Du, Q. Z., Sun, R. Y., Qin, T., et al., 2010, A study of perfectly matched layers for joint multicomponent reverse-time migration: Applied Geophysics, 7(2), 166−173.
[6] Dutta, G., and Schuster, G. T., 2014, Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation: Geophysics, 79(6), S251−S262.
[7] Dutta, G., Giboli, M., Williamson, P., and Shuster, G., T., 2015, Least-squares reverse time migration with factorization-free priorconditioning: 85th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4270−4275.
[8] Dutta, G., and Schuster, G. T., 2015, Sparse least-squares reverse time migration using seislets: 85th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4232−4237.
[9] Etgen, J. T., 2005, How many angles do we really need for delayed-shot migration: 75th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 1985−1988.
[10] Fan, J. W., Li, Z. C., Zhang, K., et al., 2016, Multisource least-squares reverse-time migration with structure-oriented filtering: Applied Geophysics, 13(3), 491−499.
[11] Herrmann, F. J., and Brown, C. R., 2009, Curvelet-based migration preconditioning and scaling: Geophysics, 74(4), A41−A46.
[12] Hestenes, M. R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards, 49, 409−436.
[13] Huang, J., Li, Z., Kong, X., et al., 2013, A study of least-squares migration imaging method for fractured-type carbonate reservoir: Chinese J. Geophys. (in Chinese), 56(5), 1716−1725.
[14] Huang, J., Li, C., Wang, R., and Li, Q., 2015, Plane-wave least-squares reverse time migration for rugged topography: Journal of Earth Science, 26(4), 471−480.
[15] Huang, W., Wang, R., Chen, Y., et al., 2016, Damped multichannel singular spectrum analysis for 3D random noise attenuation: Geophysics, 81(4), V261−V270.
[16] Krebs, J. R., Anderson, J. E., Hinkley, D., et al., 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics, 74(6), WCC177−WCC188.
[17] Kuehl, H., and Sacchi, M. D., 2003, Least-squares wave-equation migration for AVP/AVA inversion: Geophysics, 68(1), 262−273.
[18] Li, C., Huang, J., Li, Z., et al., 2016a, Plane-wave least-square reverse time migration with encoding strategies, Journal of Seismic Exploration, 25, 177−197.
[19] Li, C., Huang, J., Li, Z., and Wang, R., 2016b. Least-squares migration of simultaneous source data with singular spectrum regularization: SPG/SEG 2016 International Geophysical Conference, Society of Exploration Geophysicists and Society of Petroleum Geophysicists, 579−581.
[20] Li, Q. Y., Huang, J. P., Li, Z. C., et al., 2014a, Multisource least-squares reverse-time migration in the presence of topography on body-fitted grids, 76th EAGE Conference and Exhibition EAGE, Extended Abstracts.
[21] Li, Z. C., Guo, Z. B., and Tian, K., 2014b, Least-square reverse time migration in visco-acoustic medium: Chinese J. Geophys (in Chinese), 1, 79-94.
[22] Liu, G. C., Chen, X. H., Song, J. Y., and Rui, Z. H., 2012, A stabilized least-squares imaging condition with a structure constraint: Applied Geophysics, 9(4), 459−467.
[23] Liu, Y. J., Li, Z. C., Wu, D., et al., 2013, The research on local slope constrained least-square migration: Chinese J. Geophys (in Chinese), 56(3), 1003−1011.
[24] Liu, Y. J., and Li, Z. C., 2015, Least-squares reverse-time migration with extended imaging condition: Chinese J. Geophys (in Chinese), 58(10), 3771−3782.
[25] Nemeth, T., Wu, C., and Schuster, G. T., 1999, Least-squares migration of incomplete reflection data, Geophysics, 64(1), 208−221.
[26] Oropeza, V., 2010, The singular spectrum analysis method and its application to seismic data denoising and reconstruction: PhD Thesis, University of Alberta.
[27] Oropeza, V., and Sacchi, M., 2010, A randomized SVD for multichannel singular spectrum analysis (MSSA) noise attenuation: 80th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 3539−3544.
[28] Oropeza, V., and Sacchi, M., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76, V25−V32.
[29] Rokhlin, V., Szlam, A., and Tygert, M., 2009, A randomized algorithm for principal component analysis: SIAM Journal on Matrix Analysis and Applications, 31, 1100−1124.
[30] Sacchi, M., 2009, FX Singular Spectrum Analysis: CSPG CSEG CWLS Convention, 392−395.
[31] Schuster, G. T., Wang, X., Huang, Y., et al., 2011, Theory of multisource crosstalk reduction by phase-encoded statics: Geophysical Journal International, 184, 1289−1303.
[32] Stanton, A., and Sacchi, M., 2015, Least squares wave equation migration of elastic data, 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 116−121.
[33] Tan, S., and Huang, L., 2014, Least-squares reverse-time migration with a wavefield-separation imaging condition and updated source wavefields: Geophysics, 79(5), S195−S205.
[34] Xue, Z., Chen, Y., Fomel, S., and Sun, J., 2015, Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization: Geophysics, 81(1), S11−S20.
[35] Zhang, Y., Sun, J., Notfors, C., et al., 2005, Delayed-shot 3D depth migration: Geophysics, 70(6), E21−E28.
[36] Zhao, Y., Liu, Y., and Ren, Z. M., 2014, Viscoacoustic prestack reverse time migration based on the optimal time-space domain high-order finite-difference method: Applied Geophysics, 11(1), 50−62.
[37] Zhou, H. M., Chen, S. C., Ren, H. R., et al., 2014, One-way wave equation least-squares migration based on illumination compensation: Chinese Journal of Geophysics (in Chinese), 57(8), 2644−2655.
[1] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[2] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[3] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[4] 韩建光, 王赟, 韩宁, 邢占涛, 芦俊. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
[5] 刘国昌, 陈小宏, 宋建勇, 芮振华. 地层构造约束的稳定最小平方成像条件研究[J]. 应用地球物理, 2012, 9(4): 459-467.
[6] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[7] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
[8] 高建军, 陈小宏, 李景叶, 刘国昌, 马剑. 基于POCS方法指数阈值模型的不规则地震数据重建[J]. 应用地球物理, 2010, 7(3): 229-238.
[9] 岳玉波, 李振春, 张平, 周学锋, 秦宁. 复杂地表条件下高斯波束叠前深度偏移[J]. 应用地球物理, 2010, 7(2): 143-148.
[10] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[11] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司