APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 64-72    DOI: 10.1007/s11770-017-0602-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于粒子群优化算法的高阶广义屏偏移成像
何润1,尤加春1,刘斌2,王彦春1,邓世广3,张丰麒4
1. 中国地质大学(北京),地球物理与信息技术学院,北京100083
2. 中国石化石油工程地球物理有限公司胜利分公司,山东 东营 257086
3. 中国地质科学院,北京100037
4. 中国石化石油勘探开发研究院,北京100083
High-order generalized screen propagator migration based on particle swarm optimization
He Run1, You Jia-Chun1, Liu Bin2, Wang Yan-Chun1, Deng Shi-Guang3, and Zhang Feng-Qi4
1. China University of Geosciences (Beijing), School of Geophysics and Information Technology, Beijing 100083, China.
2. Sinopec Geophysical Co., LTD, Shengli Branch, Dongying 257086, China.
3. Chinese Academy of Geological Sciences, Beijing 100037, China.
4. Petroleum Exploration and Production Research Institute, Beijing 100083, China.
 全文: PDF (712 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 频率-波数域单程波算子能高效地模拟地震波在复杂介质中的传播,但是在描述波的大角度传播和速度横向扰动变化较大介质中传播的问题时仍然存在一定误差。这类误差是由于对单平方根算子使用Taylor展开式的近似程度不足所造成。为了进一步提高泰勒展开式的精确性,本文提出一种利用粒子群智能算法优化级数展开系数的高阶广义屏算子对单平方根算子的展开级数进行优化处理。新的偏移算法能在保持单程波偏移算法高效的前提下进一步提高偏移算子在大角度的成像精度和对强横向速度变化介质的适应性。通过脉冲响应实验,验证了基于粒子群算法优化级数的高阶广义屏算子能够提高常规的高阶广义屏算子的成像精度和成像角度。根据对二维SEG/EAGE盐丘模型的成像处理,基于粒子群算法优化级数的高阶广义屏算子对盐丘下面的断层取得了更高质量的成像,说明粒子群优化级数的高阶广义屏算子比常规的高阶广义屏算子具有更好的横向速度适应性。为了检验本文所提算法对实际资料的处理能力,我们利用常规的偏移处理技术和本文所提算法对一条海上二维数据进行了偏移成像处理,对比分析成像剖面发现本文所提算法描述了更加清晰的层位信息和更高质量的偏移剖面。本文所提算法能有效提高高阶广义屏偏移在广角度成像的能力,具有一定实际应用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词粒子群智能算法   高阶广义屏算子   Taylor级数   偏移成像   单程波算子     
Abstract: Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unresolved. To describe the seismic wave propagation in media with lateral velocity variations and to image high-angle structures, we propose the generalized screen propagator based on particle swarm optimization (PSO-GSP), for the precise fitting of the single-square-root operator. We use the 2D SEG/EAGE salt model to test the proposed PSO-GSP migration method to image the faults beneath the salt dome and compare the results to those of the conventional high-order generalized screen propagator (GSP) migration and split-step Fourier (SSF) migration. Moreover, we use 2D marine data from the South China Sea to show that the PSO-GSP migration can better image strong reflectors than conventional imaging methods.
Key wordsparticle swarm optimization   generalized screen propagator   Taylor series   seismic migration   one-way wave operator   
收稿日期: 2016-09-12;
基金资助:

本研究由国家高技术研究发展计划(863项目)(编号:2013AA064201)和国家科技重大专项课题(编号:2016ZX05003-003)资助。

引用本文:   
. 基于粒子群优化算法的高阶广义屏偏移成像[J]. 应用地球物理, 2017, 14(1): 64-72.
. High-order generalized screen propagator migration based on particle swarm optimization[J]. APPLIED GEOPHYSICS, 2017, 14(1): 64-72.
 
[1] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration: Geophysics, 48, 1514-1524.
[2] Byoung, Y. K., Seol, S. J., Ho-Young L., and Joongmoo B., 2016, Prestack elastic generalized- screen migration for multicomponent data: Journal of Applied Geophysics, 126(3), 116-127.
[3] Chen, J. B., 2010, On the selection of reference velocities for split-step Fourier and generalized- screen migration methods: Geophysics, 75(6), 249-257.
[4] Claerbout, J. F., 1985, Imaging the earth's interior: Blackwell scientific publication, Inc., Cambridge, MA, USA, 73−103.
[5] de Hoop, M. V., Le Rousseau, J. H., and Wu, R. S., 2000, Generalization of the phase-screen approximation for the scattering of acoustic waves: Wave Motion, 31, 285-296.
[6] Ferguson, R. J., and Margrave, G. F., 2005, Planned seismic imaging using explicit one-way operators: Geophysics, 70(5), S101-S109.
[7] Gazdag, J., 1978, Wave equation migration with the phase-shift method: Geophysics, 43, 1342-1351.
[8] Kelamis, P. G., 1988, On the theory of Chebyshev polynomial in wave-equation migration: Geophysical Journal International, 94, 421-426.
[9] Kennedy, J., and Eberhart, R. C., 1995, Particle Swarm Optimization: Proceedings of IEEE International Conference on Neural Networks, 4, 1942-1948.
[10] Kennedy, J., and Eberhart, R. C., 2001, Swarm Intelligence: Morgan Kaufmann publication, San Francisco, 134−142.
[11] Le Rousseau, J. H., and de Hoop, M. V., 2001, Modeling and imaging with the scalar generalized- screen algorithms in isotropic media: Geophysics, 66, 1551-1568.
[12] Liu, L. N., and Zhang, J. F., 2006, 3D wavefield extrapolation with optimum split-step Fourier method: Geophysics, 71(3), T95-T108.
[13] Mitchell, M., 1996, An introduction to genetic algorithms: MIT Press, Cambridge, MA, 155−178.
[14] Ristow, D., and Rühl, T., 1994, Fourier finite-difference migration: Geophysics, 59, 1882-1893.
[15] Ristow, D., and Rühl, T., 1997, Optimized operators for 3-D Fourier finite-difference migration: Journal of Seismic Exploration, 6, 367-383.
[16] Schneider, W. A., 1987, Integral formulation for migration in two and three dimension: Geophysics, 43(1), 691−714.
[17] Shin, S., Byun, J., and Seol, S. J., 2015, Imaging tilted transversely isotropic media with a generalized screen propagator: Exploration Geophysics, 46(4), 349-358.
[18] Stoffa, R. H., 1978, Migration by Fourier transform: Geophysics, 43(1), 23−48.
[19] Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step Fourier migration: Geophysics, 55, 410-421.
[20] Zhang, J. H., Wang, W. M., Wang, S. Q., and Yao, Z. X., 2010, Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts: Geophysics, 75(2), 23-34.
[21] Zhou, H. M., Chen, S. C., and Ren, H. R., 2014, One way wave equation least squares migration based on illumination compensation: Chinese Journal of Geophysics (in Chinese), 57(8), 2644-2655.
[22] Zhu, S. W., Zhang, J. H., and Yao, Z. X., 2008, Globally optimized Fourier finite difference operator using simulated annealing algorithm based on parameter: Chinese Journal Geophysics (in Chinese), 51(6), 1844−1850.
[1] 张冲,黄大年,张凯,浦义涛,于平. 基于Pade有理展开的磁性界面正反演方法[J]. 应用地球物理, 2016, 13(4): 712-720.
[2] 陈海峰, 李向阳, 钱忠平, 宋建军, 赵桂玲. 基于两参数简化方程的叠前偏移速度分析[J]. 应用地球物理, 2016, 13(1): 135-144.
[3] 杜淑媛, 陈景波, 刘洪. 单程波最优可分近似偏移方法精度分析[J]. 应用地球物理, 2011, 8(4): 328-338.
[4] 刘国峰, 刘洪, 李博, 孟小红. 利用单程波算子进行叠前时间偏移走时计算[J]. 应用地球物理, 2009, 6(2): 129-137.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司