APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 87-95    DOI: 10.1007/s11770-017-0607-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于曲波变换的三维地震数据同时重建和噪声压制
张华1,陈小宏2,张落毅1
1. 东华理工大学放射性地质与勘探技术国防重点学科实验室,南昌 330013
2. 海洋石油勘探国家工程实验室,中国石油大学(北京),昌平 102249
3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform
Zhang Hua1, Chen Xiao-Hong2, and Zhang Luo-Yi1
1. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology,  Nanchang 330013, China.
2. National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1943 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 野外地震数据包含各种随机噪声干扰且在空间方向常进行不规则欠采样,影响后续资料处理,存在数据重建和噪声压制问题,而大多数据重建方法只能独立进行,对于噪声压制则无能为力,对于含噪地震数据的重建效果不理想, 起不到压制噪声的效果。为此本文选用多尺度多方向的二维曲波变换进行三维地震数据同时重建与噪声压制,在此过程中引入凸集投影算法(POCS),采用指数平方根衰减规律的阈值参数及软阈值算子对每个时间切片单独进行重建。在此基础上,引入加权因子策略,使得在的重建过程中减少噪声对重建结果的影响,最终实现了一种能够同时进行三维地震数据重建和噪声压制的方法。通过与先重建后去噪以及傅里叶变换处理方法的比较,表明了该方法效果显著,这对于指导复杂地区数据采集和缺失地震道重建方面具有重要的实用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词曲波变换   数据重建   三维去噪   凸集投影     
Abstract: Seismic data contain random noise interference and are affected by irregular subsampling. Presently, most of the data reconstruction methods are carried out separately from noise suppression. Moreover, most data reconstruction methods are not ideal for noisy data. In this paper, we choose the multiscale and multidirectional 2D curvelet transform to perform simultaneous data reconstruction and noise suppression of 3D seismic data. We introduce the POCS algorithm, the exponentially decreasing square root threshold, and soft threshold operator to interpolate the data at each time slice. A weighing strategy was introduced to reduce the reconstructed data noise. A 3D simultaneous data reconstruction and noise suppression method based on the curvelet transform was proposed. When compared with data reconstruction followed by denoizing and the Fourier transform, the proposed method is more robust and effective. The proposed method has important implications for data acquisition in complex areas and reconstructing missing traces.
Key wordscurvelet transform   data reconstruction   three-dimensional denoizing   projections-onto-convex-set algorithm   
收稿日期: 2016-04-25;
基金资助:

本研究由国家自然科学基金(编号:41304097和41664006)、江西省杰出青年人才基金(2017)、江西省自然科学基金(编号:20151BAB203044)和国家留学基金委项目(编号:201508360061)联合资助。

引用本文:   
. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
. 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform[J]. APPLIED GEOPHYSICS, 2017, 14(1): 87-95.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(5), E91−E97.
[2] Bregman, L., 1965, The method of successive projection for finding a common point of convex sets: Soviet Math, 6(3), 688−692.
[3] Cao, J. J., and Wang, B. F., 2015, An improved projection onto convex sets method for simultaneous interpolation and denoising: Chinese J. Geophys (in Chinese), 58(8), 2935−2947.
[4] Candès, E., and Donoho, D., 1999, Curvelets: a surprisingly effective nonadaptive representation for objects with edges. In Cohen, A., Rabut, C., and Schumaker, L. Eds., Curve and Surface Fitting: Saint-Malo. Vanderbilt Univ. Press.
[5] Candès, E., Demanet, L., Donoho, D., et al., 2006, Fast discrete curvelet transforms: SIAM Multiscale Modeling and Simulation, 5(1), 861−899.
[6] Chiu, S., 2014, Multidimensional interpolation using a model-constrained minimum weighted norm interpolation: Geophysics, 79(5), V191-V199.
[7] Daubechies, I., Defrise, M., and Mol, C. D., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constrains: Communications on Pure and Applied Mathematics, 57(11), 1413−1457.
[8] Ely, G., Aeron S, Hao, N., et a1., 2015, 5D seismic data completion and denoising using a novel class of tensor decompositions: Geophysics, 80(4), V83-V95.
[9] Feng, F., Wang, D. L., Zhu, H., et a1., 2013, Estimating primaries by sparse inversion of the 3D curvelet transform and the L1-norm constraint, Applied geophysics, 10(2), 201−209.
[10] Fomel, S., and Liu, Y., 2010, Seislet transform and seislet frame: Geophysics, 75(3), V25-V38.
[11] Gao, J. J., Chen, X. H., Li, J. Y., et a1., 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229−238.
[12] Gao, J. J., Stanton, A., Naghizadeh, M., et al., 2013, Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction: Geophysical prospecting, 61, 138−144.
[13] Gao, J. J., Stanton, A., and Sacchi, M. D., 2015, Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising: Geophysics, 80(6), V173-V187.
[14] Gou, F. Y., Liu, C., Liu, Y., et al., 2014, Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain: Applied Geophysics, 11(3), 277−288.
[15] Herrmann, F. J., 2010, Randomized sampling and sparsity: Getting more information from fewer samples: Geophysics, 75(6), WB173-WB187.
[16] Jin, S., 2010, 5D seismic data regularization by a damped least-norm Fourier inversion: Geophysics, 75(6), 103-111.
[17] Kreimer, N., and Sacchi, M. D., 2012, A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation: Geophysics, 77(3), V113-V122.
[18] Kreimer, N., Stanton, A., and Sacchi, M. D., 2013, Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction: Geophysics, 78(6), V273-V284.
[19] Liu, G. C., Chen, X. H., Guo, Z. F., et a1., 2011, Missing seismic data rebuilding by interpolation based on curvelet transform: Oil Geophysical Prospecting, 46(2), 237−245.
[20] Liu, Y., Liu, N., and Liu, C., 2015, Adaptive prediction filtering in t-x-y domain for random noise attenuation using regularized nonstationary autoregression: Geophysics, 80(1), V13-V21.
[21] Ma, J., and Plonka, G., 2010, The curvelet transform: IEEE Signal Processing Magazine, 27(2), 118-133.
[22] Ma, J., 2013, Three-dimensional irregular seismic data reconstruction via low-rank matrix completion: Geophysics, 78(5), V181-V192.
[23] Naghizadeh. M., and Sacchi, M. D., 2010, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75(6), WB189-WB202.
[24] Naghizadeh, M., and Sacchi, M. D., 2007, Multistep autoregressive reconstruction of seismic records: Geophysics, 72(6), V111-V118.
[25] Oropeza, V., and Sacchi, M. D., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76(3), V25-V32.
[26] Ozkan, M., Tekalp, M., and Sezan, M., 1994, POCS based restoration of space-varying blurred images: IEEE Transactions on Image Processing, 3(4), 450−454.
[27] Spitz, S., 1991, Seismic trace interpolation in the f-x domain: Geophysics, 56(6), 785-794.
[28] Tang, G., MA, J. W., and Yang, H. Z., 2012, Seismic data denoising based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27−32.
[29] Trad, D., 2009, Five-dimensional interpolation: Recovering from acquisition constraints: Geophysics, 74(6), V123-V132.
[30] Vassallo, M., Ozbek, A., Ozdemir, K., et al., 2010, Crossline wavefield reconstruction from multicomponent streamer data: Part 1 -Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient: Geophysics, 75(6), 53-67.
[31] Xue, Y.,Ma, J., and Chen, X., 2013, High-order sparse Radon transform for AVO-preserving data reconstruction, Geophysics 79(2), V13−V22.
[32] Xu, S., Zhang, Y., and Lambare, G., 2010, Antileakage Fourier transform for seismic data regularization in higher dimensions: Geophysics, 75(6), WB113-WB120.
[33] Yang, P. L., Guo, J. H., and Chen, W. C., 2012, Curvelet-based POCS interpolation of nonuniformly sampled seismic records: Journal of Applied Geophysics, 79(2), 90−93.
[34] Yu, S. W., Ma, J. W., Zhang, X. Q., et a1., 2015, Interpolation and denoising of high-dimensional seismic data by learning a tight frame: Geophysics, 80(5), V119-V132.
[35] Yu, S. W., Ma, J. W., and Osher, S., 2016, Monte Carlo data-driven tight frame for seismic data recovery:Geophysics, 81(4), V327-V340.
[36] Zhang, H., and Chen, X. H., 2013, Seismic data reconstruction based on jittered sampling and curvelet transform: Chinese J. Geophys (in Chinese), 56(5), 1637−1649.
[37] Zhang, H., Chen, X. H., and Li, H. X., 2015, 3D seismic data reconstruction based on complex-valued curvelet transform in frequency domain: Journal of Applied Geophysics 113(1), 64−73.
[38] Zhang, H., Chen, X. H., and Wu, X. M., 2013, Seismic data reconstruction based on CS and Fourier theory: Applied Geophysics, 10(2), 170−180.
[1] 袁焕,胡自多,刘朝,马坚伟. 基于经验曲波变换的面波压制方法[J]. 应用地球物理, 2018, 15(1): 111-117.
[2] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[3] 冯飞, 王德利, 朱恒, 程浩. 三维曲波变换L1范数约束稀疏反演一次波估计方法研究[J]. 应用地球物理, 2013, 10(2): 201-209.
[4] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司