APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 31-39    DOI: 10.1007/s11770-017-0608-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
祁连山冻土区水合物地层岩石物理模型的构建
刘杰,刘江平,程飞,王京,刘肖肖
中国地质大学(武汉)地球物理与空间信息学院,武汉 430074
Rock-physics models of hydrate-bearing sediments in permafrost, Qilian Mountains, China
Liu Jie1, Liu Jiang-Ping1, Cheng Fei1, Wang Jing1, and Liu Xiao-Xiao1
1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China.
 全文: PDF (614 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对祁连山冻土区DK-4井孔含水合物岩层构建岩石物理模型,分别采用K-T方程模型方法和区分填充模式的等效介质模型方法(模式I和模式II)。K-T方程主要模拟地震波在两相介质中传播,基于弹性模量计算速度;而等效介质模型主要依据对水合物地层介质的两种假设:模式I是将水合物作为孔隙填充物的一部分,模式II是将水合物作为岩石骨架的一部分。首先根据粉砂岩层段的测井数据提取了水合物地层骨架的物性参数,包括纵波速度、横波速度、密度、体积模量和剪切模量。然后依据水合物地层各主要成分的物性参数,建立了基于K-T方程的岩石物理模型和区分填充模式的等效介质模型。将两类模型的速度曲线分别与实际地层数据进行了对比:由K-T方程建立的岩石物理模型,其理论计算的速度偏离实际值;而区分填充模式的等效介质模型,其理论计算的速度符合实际值,并且填充模式II模型的速度曲线比填充模式I模型更接近实际地层情况。采用区分填充模式的等效介质模型,能够更好地实现对祁连山冻土区水合物粉砂岩地层的模拟。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词水合物   岩石物理   地震波速度   密度   孔隙度     
Abstract: Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.
Key wordsHydrates   rock-physics   seismic wave velocity   density   porosity   
收稿日期: 2016-08-03;
基金资助:

本研究项目由中国地质科学院地球物理地球化学研究所专项(编号:WH201207)资助。

引用本文:   
. 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
. Rock-physics models of hydrate-bearing sediments in permafrost, Qilian Mountains, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 31-39.
 
[1] Dai, J., Xu, H. B., Snyder, F., and Dutta, N., 2004, Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deep-water Gulf of Mexico: The leading edge, 23(1), 60-66.
[2] Dvorkin, J. P., and Nur, A. M., 1996, Elasticity of high-porosity sandstones: Theory for two North Sea datasets: Geophysics, 61(5), 1363-1370.
[3] Ecker, C., 2001, Seismic Characterization of Methane Hydrate Structures, US: Stanford University, 68-72.
[4] Guo, X. W., 2011, Well logging Response Characteristics and Evaluation of Gas hydrae in Qilian mountain permafrost, Beijing: Chinese Academy of Geological Science, 33-42.
[5] Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A., and Collett, T., 1999, Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling: Geophy. Res., 26(13), 2021-2024.
[6] Hu, G. W., Ye, Y. G., Zhang, J., et al., 2010, Micro-models of gas hydrate and their impact on the acoustic properties of the host sediments: Natural gas industry, 30(3), 120-124.
[7] Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media-1: Geophysics, 39, 587-606.
[8] Lee, M. W., Hutchinson, D. R., and Dillon, W. P., 1996, Seismic velocities for hydrate-bearing sediments using weighted equation: J. Geophys. Res., 101(B9), 20347-20358.
[9] Li, C. H., Zhao, Q., Xu, H. J., et al., 2014, Relation between relative permeability and hydrate saturation in Shenhu area, south china sea: Applied Geophysics, 11(2), 207-214.
[10] Li, J. Y., and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Applied geophysics, 10(1), 1-13.
[11] Lu, Z. Q., Zhu, Y. H., Zhang, Y. Q., et al., 2010, Basic geological characteristics of gas hydrate in Qilian Mountain permafrost area, Qinghai Province: Mineral deposits, 29(1), 182-191.
[12] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook: tools for seismic analysis of porous media, Cambridge University Press.
[13] Muhammed, I. E., Nisar, A., Perceiz, K., et al., 2016, An application of rock physics modeling to quantify the seismic response of gas hydrate-bearing sediments in Makran accretionary prism, offshore, Pakistan: Geosciences Journal, 20(3), 321-330.
[14] Murphy, W. F. I., 1982, Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials: Ph. D thesis stanford Univ., 144-147.
[15] Pang, S. J, Su, X., He, H., et al., 2012, Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost, China: Earth Science Frontiers, 19(1), 1-17.
[16] Sell, K., Saenger, E. H., Falenty, A., et al., 2016, On the path to the digital rock physics of gas hydrate bearing sediments-processing of in-situ synchrotron-tomography data: Solid Earth, 7, 1243-1258.
[17] Shankar, U., Gupta, D. K., Bhowmick, D., and Sain, K., 2013, Gas hydrate and free gas saturations using rock physics modeling at site NGHP-01-05 and 07 in the Krishna-Godavari Basin, eastern Indian margin: Journal of Petroleum Science and Engineering, 106(6), 62-70.
[18] Song, H. B., Matsubayasgi, O., Yang, S. X., et al., 2002, Physical property models of gas hydrate-bearing Sediments and AVA character of bottom simulating reflector: Chinese J. Geophys. (in Chinese), 45(4), 546-556.
[19] Sun, C. Y., Zhang M. Y., Niu, B. H., et al., 2003, Micro-models of gas hydrate and their velocity estimation methods: Earth science Frontiers, 10(1), 191-198.
[20] Tang, J., Wang, H., Yao, Z. A., et al., 2016, Shear wave velocity estimation based on rock physics diagnosis: Oil geophysical prospecting, 51(3), 537-543.
[21] Zimmerman, R. W., and King, M. S., 1986, The effect of the extent of freezing on seismic velocities in unconsolidated permafrost: Geophysics, 51(6), 1285-1290.
[22] Zhu, Y. H., Zhang, Y. Q., Wen, H. J., et al., 2009, Gas hydrates in the Qilian mountain permafrost, Qinghai, northwest China: Acta Geologica Sinica, 83(11), 1763-1772.
[23] Zhu, Y. H., Zhang, Y. Q., Wen, H. J., et al., 2010, Gas hydrate in the Qilian mountain permafrost and their basic characteristics: Acta Geoscientica Sinica, 31(1), 7-16.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[3] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[4] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[5] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[6] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[7] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[8] 李长征,杨勇,王锐,郑军. 利用机械取样和浅地层剖面数据反演河底泥沙参数[J]. 应用地球物理, 2017, 14(2): 225-235.
[9] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[10] 梁立锋,张宏兵,但志伟,许自强,刘秀娟,曹呈浩. 基于纵-横波阻抗与密度关系为约束条件的Fatti方程叠前密度反演方法研究[J]. 应用地球物理, 2017, 14(1): 133-141.
[11] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[12] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[13] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[14] 沙志彬, 张明, 张光学, 梁金强, 苏丕波. 利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征[J]. 应用地球物理, 2015, 12(4): 555-563.
[15] 侯振隆, 魏晓辉, 黄大年, 孙煦. 并行计算及其性能分析在重力全张量梯度数据反演中的应用[J]. 应用地球物理, 2015, 12(3): 292-302.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司