APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 40-48    DOI: 10.1007/s11770-017-0606-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水平井两相流动电磁全息测量敏感场
张阔,吴锡令,闫景富,蔡家铁
中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
Zhang Kuo1, Wu Xi-Ling1, Yan Jing-Fu1, and Cai Jia-Tie1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (918 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 电磁全息测量数据包含两种模态,因此重建流动图像也需采用“双模”融合的敏感场。首先,通过电磁全息探测物理场分析,结合层析成像数学理论Radon反变换,从定解问题推导了全息测量敏感场函数表达式。其次,将有限元仿真计算得到的全息测量敏感场应用于模拟流动试验和全息成像。结果表明,基于复电位φ关于极径r的偏导数的全息测量敏感场契合了Radon反变换的数学表达,且充分体现了幅度、相位测量敏感性;反演所得流动图像更加吻合实际流型。全息测量敏感场构建有效克服了传统单模敏感场在计算精度和计算效率等方面的局限性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词全息测量敏感场   全息探测物理场   有限元   全息成像     
Abstract: Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Key wordselectromagnetic holographic sensitivity field (EMHSF)   holographic physical detection field   finite-element method   holographic imaging   
收稿日期: 2016-07-29;
基金资助:

本研究由国家科技重大专项课题(编号:2011ZX05020-006)资助。

引用本文:   
. 水平井两相流动电磁全息测量敏感场[J]. 应用地球物理, 2017, 14(1): 40-48.
. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells[J]. APPLIED GEOPHYSICS, 2017, 14(1): 40-48.
 
[1] An, Z., Jin, N., Zhai, L., et al., 2014, Liquid holdup measurement in horizontal oil-water two-phase flow by using concave capacitance sensor: Measurement, 49(3), 153−163.
[2] Bie, J., Wu, X. L., and Miao, Z. W., 2011, Study on Flowing Image Reconstruction Algorithms for Oil Wells: Journal of Oil and Gas Technology (in Chinese), 33(7), 92−94.
[3] Cai, J. T., and Wu, X. L., 2013a, Experimental study on frequency property with array electromagnetic sensor: Well Logging Technology (in Chinese), 37(1), 24−27.
[4] Cai, J. T., and Wu, X. L., 2013b, Measurement data processing and application of electromagnetic sensors: Science Technology and Engineering (in Chinese): 13(12), 3432−3435.
[5] Cai, J. T., Wu, X. L., and Zhang, K., 2015, Fascicular electromagnetic field for electromagnetic tomography in multiphase flow well logging: Chinese J. Geophys. (in Chinese), 58(1), 289−297.
[6] Gao, Z., Yang, Y., Zhai, L., et al., 2016, A Four-Sector Conductance Method for Measuring and Characterizing Low-Velocity Oil-Water Two-Phase Flows: IEEE Transactions on Instrumentation & Measurement, 65(7), 1690−1697.
[7] Geselowitz, D. B., 1971, An application of electrocardiographic lead theory to impedance plethysmography: IEEE Transactions on Biomedical Engineering, 18, 38−41.
[8] Li, H. Q., and Qiao, H. T., 1996, Multiphase flow detection technology progress: China Petroleum Industry Press, Beijing.
[9] Liu, Z. B., and Wu, X. L., 2012, Flow pattern identification in oil wells by electromagnetic image logging: Petroleum Science, 9(3), 303−309.
[10] Longo, V., Testone, V., Oggiano, G., et al., 2014, Prospecting for clay minerals within volcanic successions: Application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy): Journal of Applied Geophysics, 111(12), 21−32.
[11] Radon, J., 1917, Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig: Mathematisch-Physische Klasse, 69, 262−277.
[12] Rücker, C., and Günther, T., 2011, The simulation of finite ERT electrodes using the complete electrode model: Geophysics, 76(4), F227−F238.
[13] Song, X., Xu, Y., and Dong, F., 2015, Sensitivity matrix construction based on ultrasound modulation for electrical resistance tomography: IEEE International Conference on Imaging Systems and Techniques, Macau, China.
[14] Sun, J. T., and Yang, W. Q., 2014, Evaluation of fringe effect of electrical resistance tomography sensor: Measurement, 53(7), 145−160.
[15] Sun, J. T., and Yang, W. Q., 2015, A dual-modality electrical tomography sensor for measurement of gas-oil-water stratified flows: Measurement, 66(4), 150−160.
[16] Suze, A. K., and Timo, H., 2015, Quantitative inverse modelling of a cylindrical object in the laboratory using ERT: An error analysis: Journal of Applied Geophysics, 114(3), 101−115.
[17] Wang, H. X, 2013, Electrical Tomography: Science Press, Beijing. (in Chinese).
[18] Wang, X. X., and Wu, X. L., 2009, Gas-water stratified flow patterns from electromagnetic tomography: Petroleum Science, 6(3), 254−258.
[19] Zhang, K., Wu, X. L., Yan, J. F., et al., 2015, Characteristics of electromagnetic holographic measurement sensitivity field for flow imaging: 2015 IEEE International Conference on Imaging Systems and Techniques, Macau, China.
[1] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[2] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[3] 周峰,汤井田,任政勇,张志勇,陈煌,皇祥宇,钟乙源. 基于有限元-积分方程的三维可控源电磁法混合正演模拟[J]. 应用地球物理, 2018, 15(3-4): 536-544.
[4] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[5] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[8] 李文奔, 曾昭发, 李静, 陈雄, 王坤, 夏昭. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
[9] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[10] 叶益信, 李予国, 邓居智, 李泽林. 激发极化法2.5维自适应有限元正演模拟[J]. 应用地球物理, 2014, 11(4): 500-507.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何涛, 李洪林, 邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
[13] 许巍, 柯式镇, 李安宗, 陈鹏, 朱军, 张维. 随钻双感应测井仪三维响应模拟及理论刻度[J]. 应用地球物理, 2014, 11(1): 31-40.
[14] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[15] 刘得军, 马中华, 邢晓楠, 李辉, 郭智勇. 含洞穴地层随钻电阻率测井响应自适应hp有限元数值模拟[J]. 应用地球物理, 2013, 10(1): 97-108.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司