APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 21-30    DOI: 10.1007/s11770-017-0609-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用
刘喜武1,2,3,郭智奇4,刘财4,刘宇巍1,2,3
1. 页岩油气富集机理与有效开发国家重点实验室,北京 100083
2. 中国石化页岩油气勘探开发重点实验室,北京 100083
3. 中国石化石油勘探开发研究院,北京 100083
4. 吉林大学,长春 130021
Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China
Liu Xi-Wu1,2,3, Guo Zhi-Qi4, Liu Cai4, and Liu Yu-Wei1,2,3
1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China.
2. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China.
3. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China.
4. Jilin University, Changchun 130021, China.
 全文: PDF (1055 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 不同类型的页岩,微观物性特征差异明显,本文针对四川盆地龙马溪组页岩气储层进行岩石物理建模及VTI各向异性参数反演。首先,基于前人对粘土矿物的定向排列是产生页岩固有各向异性主要原因这一地质认识,在岩石物理建模过程中引入粘土矿物压实指数CL参数描述粘土矿物的弹性各向异性。之后,基于岩石物理模型开发反演算法,计算页岩储层CL参数及Thomsen各向异性参数,解决了由于无法测得与井壁垂直方向上的声波速度, 各向异性直接测量存在困难的问题。计算结果表明,通过在岩石物理建模中引入粘土压实参数,反演方法能够合理估计龙马溪页岩储层的弹性各向异性,反映了龙马溪页岩的微观物性特征。进一步分析发现,龙马溪页岩中粘土含量与参数CL相关性较弱,表明粘土矿物的多少对其压实或各向异性程度影响较小。同时,参数CL在目标层龙马溪组底部和五峰组具有高异常值,反映了储层微观结构与含油气特征具有关联性。最后,基于模型构建了岩石物理模板,可用于储层测井数据与多物性参数关系的定量解释。测井数据在岩石物理模板上的合理分布也验证了岩石物理建模方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯振隆
魏晓辉
黄大年
孙煦
关键词龙马溪   页岩   各向异性   岩石物理   压实指数     
Abstract: The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induced by the alignment of clay minerals. Then, we perform the inversion of CL and the Thomsen anisotropy parameters. The direct measurement of anisotropy is difficult because of the inability to measure the acoustic velocity in the vertical direction in boreholes and instrument limitations. By introducing the parameter CL, the inversion method provides reasonable estimates of the elastic anisotropy in the Longmaxi shale. The clay content is weakly correlated with the CL parameter. Moreover, the parameter CL is abnormally high at the bottom of the Longmaxi and Wufeng Formations, which are the target reservoirs. Finally, we construct rock physics templates to interpret well logging and reservoir properties.
Key wordsLongmaxi   shale   anisotropy   rock physics   clay lamination   
收稿日期: 2016-05-06;
基金资助:

本研究由页岩油气富集机理与有效开发国家重点实验室开放基金(编号:G5800-16-ZS-KFZY002)、国家自然科学基金委员会-中国石油化工股份有限公司石油化工联合基金资助项目(编号:U1663207)和国家自然科学基金青年科学基金项目(编号:41404090)联合资助。

引用本文:   
侯振隆,魏晓辉,黄大年等. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
Hou Zhen-Long,Wei Xiao-Hui,Huang Da-Nian et al. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
 
[1] Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62(6), 1954-1974.
[2] Bayuk, I. O., Ammerman, M., and Chesnokov, E. M., 2007, Elastic moduli of anisotropic clay: Geophysics, 72(5), D107-D117.
[3] Slatt, R. M., and Abousleiman, Y., 2011, Merging sequence stratigraphy and geomechanics for unconventional gas shale: The Leading Edge, 30(3), 274-282.
[4] Berryman, J. G., 1995, Mixture theories for rock properties in Rock Physics and Phase Relations - a Handbook of Physical Constants: Washington, DC, American Geophysical Union.
[5] Carcione, J. M., 2000, A model for seismic velocity and attenuation in petroleum source rocks: Geophysics, 65(4), 1080-1092.
[6] Vernik, L., 1994, Hydrocarbon-generation-induced microcracking of source rocks: Geophysics, 59(4), 555-563.
[7] Carcione, J. M., 2001, Amplitude variations with offset of pressure-seal reflections: Geophysics, 61(1), 283-293.
[8] Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales -A petrophysical study: Geophysics, 62(2), 521-532.
[9] Vernik, L., and Nur, A., 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727-735.
[10] Carcione, J. M., Helle, H. B., and Avseth, P., 2011, Source-rock seismic-velocity models Gassmann versus Backus: Geophysics, 76(5), N37-N45.
[11] Wang, Z. J., 2002a, Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method: Geophysics, 67(5), 1415-1422.
[12] Deng, J. X., Wang, H., Zhou, H., et al., 2015, Microstructure, seismic rock physical properties and modeling of Longmaxi Formation shale: Chinese Journal of Geophysics (in Chinese), 58(6), 2123-2136.
[13] Wang, Z. J., 2002b, Seismic anisotropy in sedimentary rocks: part 2 Laboratory data: Geophysics, 67(5), 1423-1440.
[14] Dong, N., Huo, Z. Z., Sun, Z. D., et al., 2014, An inversion of a new rock physics model for shale:Chinese Journal of Geophysics (in Chinese), 57(6), 1990-1998.
[15] Xu, S. Y., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(11), 66-74.
[16] Guo, Z. Q., and Li, X. Y., 2015, Rock physics model-based prediction of shear wave velocity in the Barnett Shale formation: Journal of Geophysics and Engineering, 12, 527-534.
[17] Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, Prediction for in-situ formation stress of shale based on rock physics equivalent model: Chinese Journal of Geophysics (in Chinese), 58(6), 2112-2122.
[18] Guo, Z. Q., Li, X. Y., Liu, C., et al., 2013, A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale: Journal of Geophysics and Engineering, 10, 1-10.
[19] Guo, Z. Q., Li, X. Y., and Liu, C., 2014, Anisotropy parameters estimate and rock physics analysis for the Barnett Shale: Journal of Geophysics and Engineering, 11, 1-10.
[20] Hashin, Z., and Shtrikman, S., 1963, A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127-140.
[21] Hornby, B. E., Schwartz, L. M., and Hudson, J. A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570-1583.
[22] Hu, Q., Cheng, X. H., and Li, J. Y., 2014, Shear velocity prediction for organic shales based on the single aspect ratio model: Progress in Geophysics (in Chinese), 29(5), 2388-2394.
[23] Jiang, M. J., and Spickes, K. T., 2013, Estimation of reservoir properties of the Haynesville Shale by using rock-physics modelling and grid searching: Geophysical Journal International, 195, 315-329.
[24] Mavko, G., Mukerji, T., and Dovrkin, J., 2009, The Rock Physics Handbook (2nd edition): Cambridge University Press.
[25] Ortega, J. A., Ulm, F. J., and Abousleiman, Y., 2009, The nanogranular acoustic signature of shale: Geophysics, 74(3), D65-D84.
[26] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53, 667-676.
[27] Sayers, C. M., 2008, The elastic properties of carbonates: The Leading Edge, 27(8), 1020-1024.
[28] Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62(6), 1954-1974.
[29] Slatt, R. M., and Abousleiman, Y., 2011, Merging sequence stratigraphy and geomechanics for unconventional gas shale: The Leading Edge, 30(3), 274-282.
[30] Vernik, L., 1994, Hydrocarbon-generation-induced microcracking of source rocks: Geophysics, 59(4), 555-563.
[31] Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales -A petrophysical study: Geophysics, 62(2), 521-532.
[32] Vernik, L., and Nur, A., 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727-735.
[33] Wang, Z. J., 2002a, Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method: Geophysics, 67(5), 1415-1422.
[34] Wang, Z. J., 2002b, Seismic anisotropy in sedimentary rocks: part 2 Laboratory data: Geophysics, 67(5), 1423-1440.
[35] Xu, S. Y., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(11), 66-74.
[36] Zhang, G. Z., Chen, J. J., Chen, H. Z., et al., 2015, Prediction for in-situ formation stress of shale based on rock physics equivalent model: Chinese Journal of Geophysics (in Chinese), 58(6), 2112-2122.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[3] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[6] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[7] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[8] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[9] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[10] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[11] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[12] 杨学立,李博,彭传圣,杨洋. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
[13] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司