APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 10-20    DOI: 10.1007/s11770-017-0597-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
致密砂岩弹性各向异性特征及影响因素分析
宋连腾1,刘忠华1,周灿灿1,俞军1,修立军2,孙中春3,张海涛4
1. 中国石油勘探开发研究院,北京 100083
2. 中国石油吉林油田分公司勘探开发研究院,吉林松原 138001
3. 中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依834000
4. 中国石油长庆油田分公司勘探开发研究院,陕西西安710018
Analysis of elastic anisotropy of tight sandstone and the influential factors
Song Lian-Teng1, Liu Zhong-Hua1, Zhou Can-Can1, Yu Jun1, Xiu Li-Jun2, Sun Zhong-Chun3, and Zhang Hai-Tao4
1. Petrochina Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
2. Exploration and Development Research Institute, Jilin Oilfield, Petro China, Songyuan, Jilin 138001, China.
3. Exploration and Development Research Institute, Xinjiang Oilfield, Pertro China, Kerarnay, Xinjiang 834000, China.
4. Exploration and Development Research Institute, Changqing Oilfield, Pertro China, Xi’an 710018, China.
 全文: PDF (994 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 致密砂岩具有一定的各向异性。本文通过不同方向样品的声速测量及相关配套实验对致密砂岩进行了孔隙结构及各向异性分析,同时与页岩进行了对比。结果表明,致密砂岩样品所表现出的各向异性主要是由沉积环境差异形成的成分层、薄互层造成,具有典型的TI介质特征。不同方向杨氏模量随围压增加而增大,泊松比变化不明显。各向异性系数均随有效压力增加而减少,同时ε与γ和δ之间存在一定的线性关系。最后总结了不同地区的各向异性规律,为不同地区选择适合的评价模型奠定了基础。本次研究可为致密砂岩的测井评价、地震资料解释及压裂开发提供实验依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词致密砂岩   声波速度   弹性特征   各向异性     
Abstract: Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
Key wordsTight sandstone   wave velocity   elastic properties   anisotropy   
收稿日期: 2016-09-30;
基金资助:

本研究由十二五国家科技重大专项(编号:2011ZX05020-008)和中国石油天然气集团公司测井基础研究项目(编号:2014A-3910)联合资助。

引用本文:   
. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
 
[1] Deng, J. X., Shi, G., and Liu, R. W., 2004, Analysis of the velocity anisotropy and its affection factors in shale and mudstone: Chinese Journal of Geophysics, 47(5), 862−868.
[2] Dewhurst, D. N., and Siggins, A. F., 2006, Impact of fabric, microcracks and stress field on shale anisotropy: Geophysical Journal International, 165(1), 135−148.
[3] Holt, R. M., Fjer, E., Raaen, A. M., et al., 1991, Shear Waves in Marine Sediments: Springer Netherlands, 167−174.
[4] Jakobsen, M., and Johansen, T. A., 2000, Anisotropic approximations for mudrocks: a seismic laboratory study: Geophysics, 65(6), 1711−1725.
[5] Domnesteanu, P., McCann, C., and Sothcott, J., 2002, Velocity anisotropy and attenuation of shale in under- and overpressured conditions: Geophysical Prospecting, 50(5), 487−503.
[6] Johnston, D. H., 1987, Physical properties of shales at temperature and pressure: Geophysics, 52(2), 1391−1401.
[7] Geertsma, J., and Smit, D. C., 1961, Some aspects of elastic wave propagation in fluid-saturated porous solids: Geophysics, 26(2), 169−181
[8] He, T., Zou, C. C., Pei, F. G., et al., 2010, Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones: Applied Geophysics, 7(2), 114-126.
[9] Johnston, J. E., and Christensen, N. I., 1995, Seismic anisotropy of shales: Journal of Geophysical Research Solid Earth, 100(B4), 5991−6003.
[10] Jones, L., and Wang, H. F., 1981, Ultrasonic velocities in Cretaceous shales from the Williston basin: Geophysics, 46(3), 288-297.
[11] Lama, R. D., and Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks-Testing Techniques and results. Vol. II: International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11(11), A218.
[12] Liu, B., 2000, Relations of elastic wave velocity and attenuation and their anisotropies to the fabric of rocks under different P-T conditions: Earth Science Frontiers, 7(1), 247−257.
[13] Mavko, G., and Jizba, D., 1991, Estimating grain scale fluid effects on velocity dispersion in rocks: Geophysics, 56(12), 1940−1949.
[14] Pei, F. G., Zou, C. C., He, T., et al., 2010, Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks: Applied Geophysics, 7(1), 1−9.
[15] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53(5), 667−676.
[16] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[17] Vernik, L., and Nur, A., 1992, Ultrasonic and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727−735.
[18] Higgins, S., Goodwin, S., Donald, A., et al., 2008, Anisotropic stress models improve completion design in Baxter shale: SPE 83th Annual Technical Conference and Exhibition, 1-10.
[19] Hornby, B. E., 1998, Experimental laboratory determination of the dynamic elastic properties of wet, drained shales: Journal of Geophysical Research Solid Earth, 103(B12), 29945−29964.
[20] Walsh, J., Sinha, B., and Donald, A., 2006, Formation anisotropy parameters using borehole sonic data: SPWLA 47th Annual Logging Symposium, 1−7.
[21] Wang, Z., 2002a, Seismic anisotropy in sedimentary rocks, part1: a single plug laboratory mechtod: Geophysics, 67(5), 1415−1422.
[22] Wang, Z., 2002b, Seismic anisotropy in sedimentary rocks, part2: Laboratory data: Geophysics, 67(5), 1423−1440.
[23] Holt, R. M., Fjer, E., Raaen, A. M., et al., 1991, Shear Waves in Marine Sediments: Springer Netherlands, 167−174.
[24] Jakobsen, M., and Johansen, T. A., 2000, Anisotropic approximations for mudrocks: a seismic laboratory study: Geophysics, 65(6), 1711−1725.
[25] Johnston, D. H., 1987, Physical properties of shales at temperature and pressure: Geophysics, 52(2), 1391−1401.
[26] Johnston, J. E., and Christensen, N. I., 1995, Seismic anisotropy of shales: Journal of Geophysical Research Solid Earth, 100(B4), 5991−6003.
[27] Jones, L., and Wang, H. F., 1981, Ultrasonic velocities in Cretaceous shales from the Williston basin: Geophysics, 46(3), 288-297.
[28] Lama, R. D., and Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks-Testing Techniques and results. Vol. II: International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11(11), A218.
[29] Liu, B., 2000, Relations of elastic wave velocity and attenuation and their anisotropies to the fabric of rocks under different P-T conditions: Earth Science Frontiers, 7(1), 247−257.
[30] Mavko, G., and Jizba, D., 1991, Estimating grain scale fluid effects on velocity dispersion in rocks: Geophysics, 56(12), 1940−1949.
[31] Pei, F. G., Zou, C. C., He, T., et al., 2010, Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks: Applied Geophysics, 7(1), 1−9.
[32] Sayers, C. M., 2005, Seismic anisotropy of shales: Geophysical Prospecting, 53(5), 667−676.
[33] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[34] Vernik, L., and Nur, A., 1992, Ultrasonic and anisotropy of hydrocarbon source rocks: Geophysics, 57(5), 727−735.
[35] Walsh, J., Sinha, B., and Donald, A., 2006, Formation anisotropy parameters using borehole sonic data: SPWLA 47th Annual Logging Symposium, 1−7.
[36] Wang, Z., 2002a, Seismic anisotropy in sedimentary rocks, part1: a single plug laboratory mechtod: Geophysics, 67(5), 1415−1422.
[37] Wang, Z., 2002b, Seismic anisotropy in sedimentary rocks, part2: Laboratory data: Geophysics, 67(5), 1423−1440.
[1] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[2] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[3] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[5] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[6] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[7] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[8] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[9] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[10] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[11] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[12] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[13] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[14] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[15] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司