APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 1-9    DOI: 10.1007/s11770-017-0612-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
震前重力扰动的频谱特征和远场效应
强建科1,2,鲁凯1,张钱江1,满开峰1,李俊营1,毛先成1,2,赖健清1,2
1. 中南大学地球科学与信息物理学院,湖南长沙 410083
2. 中南大学教育部有色金属成矿预测重点实验室,湖南长沙 410083
Frequency characteristics and far-field effect of gravity perturbation before earthquake
Qiang Jian-Ke1,2, Lu Kai1, Zhang Qian-Jiang1, Man Kai-Feng1, Li Jun-Ying1, Mao Xian-Cheng1,2, and Lai Jian-Qing1,2
1. School of Geosciences and info-physics, Central South University, Changsha 410083, China.
2. The Key Laboratory of Metallogenic Prediction of Nonferrous Metals of Ministry of Education, Central South University, Changsha 410083, China.
 全文: PDF (688 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 探索地震前兆是一件具有挑战性的研究。本文采用高通滤波的方法,处理分析了来自世界不同位置4个超导重力台站5次大地震前的秒级固体潮重力数据,发现在这些地震发生之前数天内,能够接收到稳定的重力高频扰动信号,其中2008年5月12日的汶川地震前出现一个主频为0.1-0.3Hz的重力扰动,而其他4次地震前出现两个主频为0.12-0.17Hz和0.06-0.085Hz的重力扰动。另一个发现是当地震发生在大陆与海洋板块断裂带时这种重力扰动信号具有远场效应,即重力扰动异常出现在距离震中较远的超导重力仪上,而较近的台站异常较小或没有异常。以上研究结果表明,这种重力扰动信号与地震发生具有较密切的相关性,可作为一种有潜力的临震预报信号;重力扰动信号的远场效应也许能够揭示某些地震发生前地球内部板块之间的相互作用机制。但由于地球上重力固体潮台站分布的非常不均匀,上述结果还需要今后研究更多的样本数据加以证实。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
强建科
鲁凯
张钱江
满开峰
李俊营
毛先成
赖健清
关键词地震   震前重力扰动   超导重力仪   远场效应     
Abstract: We used high-pass filtering and the Fourier transform to analyze tidal gravity data prior to five earthquakes from four superconducting gravity stations around the world. A stable gravitational perturbation signal is received within a few days before the earthquakes. The gravitational perturbation signal before the Wenchuan earthquake on May 12, 2008 has main frequency of 0.1–0.3 Hz, and the other four have frequency bands of 0.12−0.17 Hz and 0.06−0.085 Hz. For earthquakes in continental and oceanic plate fault zones, gravity anomalies often appear on the superconducting gravimeters away from the epicenter, whereas the stations near the epicenter record small or no anomalies. The results suggest that this kind of gravitational perturbation signals correlate with earthquake occurrence, making them potentially useful earthquake predictors. The far-field effect of the gravitational perturbation signals may reveal the interaction mechanisms of the Earth’s tectonic plates. However, owing to the uneven distribution of gravity tide stations, the results need to be further confirmed in the future.
Key wordsearthquake   pre-seismic gravity perturbation   superconducting gravimeter   far-field effect   
收稿日期: 2017-02-13;
基金资助:

本研究由国家自然科学基金项目(编号:41472301和41174104)和中南大学创新驱动计划项目(编号:2015CX008)联合资助。

引用本文:   
强建科,鲁凯,张钱江等. 震前重力扰动的频谱特征和远场效应[J]. 应用地球物理, 2017, 14(1): 1-9.
QIANG Jian-Ke,LU Kai,ZHANG Qian-Jiang et al. Frequency characteristics and far-field effect of gravity perturbation before earthquake[J]. APPLIED GEOPHYSICS, 2017, 14(1): 1-9.
 
[1] Aster, R. C., McNamara, D. E., and Bromirski, P. D., 2008, Multidecadal climate-induced variability in microseisms: Seismol. Res. Lett., 79(2), 194−202.
[2] Chen, Y. T., 2007, Earthquake prediction progress, difficulties and prospect: Seismological and Geomagnetic Obsevation and Research (in Chinese), 28(2), 1−24.
[3] Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F., 1997, Earthquakes cannot be predicted: Science, 275, 1616−1617.
[4] Hao, J. G., Pan, H. W., Mao, G. M., Zhang, Y. F., Tang, T. M., Li, R. D., and Li, S., 2000, Anomaly of quasi-static electric field and earthquake-exploration of a reliable earthquake precusor: Seismological and geomagnetic observation and research, 21(4), 3−166.
[5] Hao, X. G., and Hu, X. G., 2008, Disturbance before the Wenchuan earthquake detected by broadband seismometer: Progress in Geophysics (in Chinese), 23(4), 1332−1335.
[6] Hao, X. G., and Hu, X. G., 2011, Discussion on strategic thinking for short-term prediction of great earthquakes: Progress in Geophys (in Chinese), 26(2), 456−461.
[7] Hao, X. G., Hu, X. G., Xu, H. Z., et al., 2008, gravity disturbance before wenchuan Ms8.0 earthquake: Journal of Geodesy and Geodynamics, 3, 129−131.
[8] Hao, X. G., Xu, H. Z., Hao, X. H., Lv, C. C., and Hu, H. Q., 2001, Gravity high-frequency disturbanceand occurrence of earthquake: Crustal Deformation and Earthquake, 21(3), 9−13.
[9] Hu, X. G., and Hao, X. G., 2009, Observation of fore-seismic disturbance of the 2009/03/19 Mw7.6 Tonga earthquake: Progress in Geophys, 24(2), 866−870.
[10] Hu, X. G., Hao, X. G., and Xu, X. X., 2010, The analysis of the non-typhoon-induced microseisms before the 2008 Wenchuan earthquake: Chinese J. Geophys.(in Chinese), 53(12), 2875−2886.
[11] Ihmle,P.F., and Jordan,T.H., 1994, Teleseismic search for lowprecursorstolarge earthquake: Science, 266, 1547−1551.
[12] Jiang, H. K., Ma, S. L., Zhang, L., Hou, H. F., and Cao, W. H., 2002, Spatio-temporal characteristics of acoustic emission during the deformation of rock samples with compressional and extensional en-echelon fault pattern: Acta Seism-ologica Sinica, 24(4), 385−396.
[13] Kanamori, H., and Cipar, J. J., 1974, Focal process of the great chilean earthquake May 22, 1960: Physics of the Earth and Planetary Interiors, 9, 128−136.
[14] Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., and Hirata, N., 2012, Propagation of slow slip leading up to the 2011 Ms9.0 Tohoku-Oki earthquake: Science, 335(6069), 705−708.
[15] Kizawa, T., 1972, Recording of gravimeter around strong carthquake: Oversea Earthquakes, 1, 39−41.
[16] Kranz, R. L., and Scholz, C. H., 1977, Critical dilatant volume of rocks at the onset of tertiary creep: Journal of Geophysical Research, 82(30), 4893−4898.
[17] Lan, S. C., Yu, T. T., Hwang, C., and Kao, R., 2011, An analysis of mechanical constraints when using superconducting gravimeters for far-field preseismic anomaly detection: Terr. Atmos. Ocean. Sci., 22(3), 271−282.
[18] Liu,C.C., Linde,A.T., and Sacks,I.S., 2009, Slowearthquakestriggered bytyphoons: Nature, 459, 833−836.
[19] Liu, L. Q., Ma, S. L., Ma, J., et al., 1999, Effect of rock structure on statistical characteristics of acoustic emission: Earthquake Research in China, 13(3), 355−366.
[20] Longuest-Higgins, M. S., 1950, A theory of microseisms: .Philos. Trans. R. Soc. London, Ser. A, 243, 1−35.
[21] Mei, S. R., Feng, D. Y., Zhang, G. M., Zhu, Y. Q., Gao, X., and Zhang, Z. C., 1993, Introduction to earthquake prediction in China: Seismological Press (in Chinese), BeiJing, 96−126.
[22] Mogi, K., 1962a, On the time distribution of aftershocks accompanying the recent maior earthquakes in and near Japan: Bull. Earthquake Res. Inst., 49, 107−124.
[23] Mogi, K., 1962b, Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena: Bull. Earthquake Res. Inst., 49, 125−173.
[24] Mogi, K., 1963, Some discussion of aftershocks, foreshocks, and earthquake swarms--the fracture of a semidnfinite body caused by an inner stress origin and its relation to earthquake phenomena, 3rd paper: Bull. Earthquake Res. Inst., 41, 615−618.
[25] Mogi, K., 1967, Effect of the intermediate principal stress on rock failure: J. Geophys Res., 72, 5117−5131.
[26] Obert, L., 1939, Measurement of pressures on rock pillars in underground mines, part I: US Bur: Mines RI, 3444, 1940−1950.
[27] Obert, L., and Duvall, W., 1945, Microseismic method of predicting rock failure in underground mining, Part I. General method: Bureau of Mines, Washington, DC (USA).
[28] Peng. J., Rong, G., Zhou, C. B., Wang, X. J., and Hou, D., 2013, Experimental study of effect of water pressure on progressive failure process of rocks under compression: Rock and Soil Mechanics, 34(4), 941−946.
[29] Qi, G. Z., 1978, Dilatancy-magnetic effect: Chinese Journal of Geophysics (inchinese), 21(1), 18−33.
[30] Qiu, Y. H., Liu, C. S., and Dai, Q. W., 2008, Natural electric field method for prediction of earthquake: Central South University Press (in Chinese), Changsha, 16−137.
[31] Scholz, C. H., 1968, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes: Bulletin of the Seismological Society of America, 58(1), 399−415.
[32] Shen, W. B., Wang, D. J., and Huang, J. W., 2011, Anomalous signals prior to Wenchuan earthquake detected by superconducting gravimeter and broadband seismometers records: J. Earth Sci., 22(5), 640−651.
[33] Tanimoto, T., 2007a, Excitation of normal modes by nonlinear interaction of ocean waves: Geophys. J. Int., 168, 571−582.
[34] Tanimoto, T., 2007b, Excitation of microseisms: Geophys. Res. Lett., 34, L05308, doi:10.1029/2006GL029046.
[35] Wang, W. X., Ma, L., and Huang, J. P., 2007, Analysis of anomaly in gravity observation before and after strong earthquakes: Earthquake (in Chinese), 27(2), 53−63.
[36] Wei, J., Liu, Z. W., Hao, H. T., Wu, Y. L., Kang, K. X., Zhao, B., Shen, C. Y., and Li, H., 2011, Continuous gravity anomaly before Ms9.0 earthquake in Japan: Journal of Geodesy and Geodynamics (in Chinese), 31(2), 4−8.
[37] Xu, S. Y., Yang, R. H., Wang, B., Zhao, J. M., Yao, Y. F., Hua, P. Z., and Mei, S. R., 1998, Burst strain disturbance: a new experimental study of rupture precursor: Seismological Journal (in Chinese), 20(6), 628−634.
[38] Yi, L.,Yang, L. M., Lei, D. X., Liu, H. B., and Zou, X. B., 2011, Analysis of gravity anomalies before large earthquakes: Journal of Seismological Research (in Chinese), 34(4), 1−4.
[39] Zhang, K. L., Ma, J., and Wei, D. P., 2013, The gravity disturbance signal before the Mw9.0 magnitude earthquake in Northeast Japan in 2011 is detected by the superconducting gravity meter: Chinese Journal of Geophysics (in Chinese), 56(7), 2292−2302.
[40] Zeng, Z. W., Ma, J., Ma, S. L., and Xu, X. Q., 1993, AE b-value dynamic features and their Seismologic implications during frictional sliding of rocks: Progress in Geophysics (in Chinese), 04, 42−53.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 赵虎,徐浩,邸志欣,张金淼,刘志鹏. 采集参数对观测系统质量影响分析[J]. 应用地球物理, 2018, 15(3-4): 413-419.
[3] 陈猛,刘嘉辉,崔永福,胡天跃,陈飞旭,匡伟康,张振. 基于迭代虚同相轴方法的叠后层间多次波衰减[J]. 应用地球物理, 2018, 15(3-4): 491-499.
[4] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[5] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[6] 高峰,魏建新,狄帮让. 地震物理模拟中Q值测量方法[J]. 应用地球物理, 2018, 15(1): 46-56.
[7] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[8] 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释[J]. 应用地球物理, 2018, 15(1): 125-136.
[9] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[10] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[11] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[12] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[13] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司