APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 701-711    DOI: 10.1007/s11770-016-0581-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
时间域航空电磁三维并行反演研究
刘云鹤,殷长春,任秀艳,邱长凯
吉林大学地球探测科学与技术学院,长春 130026
3D parallel inversion of time-domain airborne EM data
Liu Yun-He1, Yin Chang-Chun1, Ren Xiu-Yan1, and Qiu Chang-Kai1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (1313 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为提高复杂条件下时间域航空电磁数据解释精度,本文开展了时间域航空电磁三维并行反演算法研究。该算法中的三维正演是基于有限差分技术,并采用“移动脚印”技术来减小实际计算模型尺寸;三维反演基于Gauss-Newton反演方法,并采用显式灵敏度矩阵计算技术减少反演过程中的正演次数。为提高三维反演的效率,本文基于OpenMP并行库实现了三维反演的并行化。从理论和实测数据的三维并行反演结果可以看出本文的并行化策略明显地提高了三维反演的速度,能够胜任大数据量时间域航空电磁实测资料三维反演解释任务。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词航空电磁   时间域   三维反演   脚印   并行计算     
Abstract: To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss–Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM “footprint” concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
Key wordsairborne EM   time domain   three-dimensional inversion   footprint   parallel computing   
收稿日期: 2016-08-09;
基金资助:

本研究由国家自然科学基金重点项目(编号:41530320)、面上项目(编号:41274121)、青年基金项目(编号:41404093)和中科院国家重大科研装备研制项目(编号:ZDYZ2012-1-03)联合资助。

引用本文:   
. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
. 3D parallel inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 701-711.
 
[1] Brodie, R., and Sambridge, M., 2006, A holistic approach to inversion of frequency-domain airborne EM data: Geophysics, 71, G301−G312.
[2] Carrigy, M. A., and Kramers, J. W., 1973, Guide to the Athabasca oil sands area: Prepared for the Canadian Society of Petroleum Geologists Oil Sands Symposium, information series 65.
[3] Chen, J., and Raiche, A., 1998, Inverting AEM data using a damped eigenparameter method: Exploration Geophysics, 29, 128−132.
[4] Christensen, N. B., Fitzpatrick, A., and Munday, T., 2010, Fast approximate inversion of frequency- domain electromagnetic data: Near Surface Geophysics, 8, 1−15.
[5] Cox, L. H., and Zhdanov, M. S., 2008, Advanced computational methods for rapid and rigorous 3D inversion of airborne electromagnetic data: Communications in Computational Physics, 3, 160−179.
[6] Cox, L. H., Wilson, G. A., and Zhdanov, M. S., 2010, 3D inversion of airborne electromagnetic data using a 移动脚印: Exploration Geophysics, 41, 250−259.
[7] Cox, L. H., Wilson, G. A., Zhdanov, M. S., 2012, 3D inversion of airborne electromagnetic data: Geophysics, 77(4), WB59−WB69.
[8] Egbert, G. D., 1994, A new stochastic process on the sphere: application to characterization of long-period global scale external sources: 14th Workshop on Electromagnetic Induction in the Earth and Moon, Brest, France.
[9] Egbert, G. D., and Kelbert, A., 2012, Computational recipes for electromagnetic inverse problems: Geophys. J. Int., 189(1), 251−267.
[10] Ellis, R. G., 1995, Joint 3D EM inversion: International Symposium on Three-Dimensional Electromagnetics, Expanded Abstracts.
[11] Ellis, R. G., 1998, Inversion of airborne electromagnetic data: Exploration Geophysics, 29, 121−127.
[12] Haber, E., 2014, Computational methods in geophysical electromagnetics: SIAM, Philadelphia.
[13] Li, Y. X., Qiang, J. K. and Tang, J. T., 2010, A research on 1-D forward and inverse airborne transient electromagnetic method: Chinese Journal Geophysics, 53(3), 751−759.
[14] Macnae, J., King, A., Stolz, N. et al., 1998, Fast AEM data processing and inversion: Exploration Geophysics, 29, 163−169.
[15] Mao, L. F., Wang, X. B. and Li, W. J., 2011, Research on 1D inversion method of fix-wing airborne transient electromagnetic record with flight altitude inversion simultaneously: Chinese Journal Geophysics, 54(8), 2136−2147.
[16] Newman, G. A., and Alumbaugh, D. L., 1995, Frequency-domain modeling of airborne electromagn- etic responses using staggered finite differences: Geophysical Prospecting, 43(8), 1021−1042.
[17] Oldenburg, D. W., Haber, E., and Shekhtman, R., 2013, Three dimensional inversion of multisource time domain electromagnetic data: Geophysics, 78(1), E47−E57.
[18] Raiche, A., Annetts, D., and Sugeng, F., 2001, EM target response in complex hosts: ASEG 15th Geophysical Conference and Exhibition, Brisbane,
[19] Siripunvaraporn, W., and Egbert, G. D., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65(3), 791−803.
[20] Tartaras, E., and Beamish, D., 2005, Laterally constrained inversion of fixed-wing frequency- domain AEM data: 12th European Meeting of Environmental and Near Surface Geophysics, Helsinki.
[21] Viezzoli, A., Auken, E., and Munday, T., 2009, Spatially constrained inversion for quasi 3D modeling of airborne electromagnetic data - an application for environmental assessment in the Lower Murray Region of South Australia: Exploration Geophysics, 40, 173−183.
[22] Vallée, M. A., Smith, R. S., 2009, Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints: Near Surface Geophysics, 7, 63−71.
[23] Wilson, G. A., Raiche, A. P., and Sugeng, F., 2006, 2.5D inversion of airborne electromagnetic data: Exploration Geophysics, 37(4), 363−371.
[24] Wolfgram, P., and Karlik, G., 1995, Conductivity- depth transform of GEOTEM data: Exploration Geophysics, 26, 179−185.
[25] Yang, D. K., Oldenburg, D. W., and Haber, E., 2014, 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings: Geophys. J. Int., 196, 1492− 1507.
[26] Zhang, Z. Y., Tan, H. D., Wang, K. P., Lin, C. H., Zhang, B. and Xie, M. B., 2016, Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space: Applied Geophysics, 13(1), 13−24.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[3] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
[4] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[5] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[6] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[7] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[8] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[9] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[10] 李文奔, 曾昭发, 李静, 陈雄, 王坤, 夏昭. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
[11] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[12] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[13] 周楠楠, 薛国强, 王贺元. 点电荷微元与偶极子源的时域电磁场响应对比[J]. 应用地球物理, 2013, 10(3): 349-356.
[14] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[15] 朱凯光, 马铭遥, 车宏伟, 杨二伟, 嵇艳鞠, 于生宝, 林君. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. 应用地球物理, 2012, 9(1): 1-8.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司