APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 689-700    DOI: 10.1007/s11770-016-0585-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
人工源极低频电磁法三维LBFGS反演
曹萌,谭捍东,王堃鹏
中国地质大学(北京)地下信息探测技术与仪器教育部重点实验室和地球物理与信息技术学院,北京 100083
3D LBFGS inversion of controlled source extremely low frequency electromagnetic data
Cao Meng1, Tan Han-Dong1, and Wang Kun-Peng1
1. Key Laboratory of Geo-detection Ministry of Education and School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
 全文: PDF (1427 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 人工源极低频电磁法因其具有场源长度大,观测范围广的特点,使得极低频电磁波的传播会受到电离层和位移电流的影响。现阶段针对该方法的三维正反演研究尚处于起步阶段。作为一项探索性的尝试,本文首先给出了电离层、空气以及地下介质耦合情况下一维极低频背景电磁场的计算方案,并对电离层影响下背景电磁波的传播特征进行了分析、总结。通过将之与求解二次电场的交错网格有限差分数值模拟算法整合,实现了人工源极低频电磁法的三维正演。针对人工源极低频探测中可能遇到的近区、过渡区数据反演问题,本文进而采用针对该方法的三维有限内存Broyden-Fletcher-Goldfarb-Shanno(Limited-memory BFGS, LBFGS)带源反演算法,实现了对全区张量阻抗数据的直接反演。文中详细介绍了目标函数梯度计算这一LBFGS反演中的核心问题。合成数据反演算例结果表明在LBFGS反演中,选择恰当的近似Hessian矩阵能够有效提高反演效率。高低阻异常同时存在下的反演模型响应告诉我们张量阻抗反对角元素对恢复地下电性结构的贡献远大于主对角元素。与常规标量数据反演相比,张量数据反演在异常体的恢复和背景电阻率的控制方面具有明显的优势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词极低频   电离层   三维反演   LBFGS     
Abstract: The controlled source extremely low frequency (CSELF) electromagnetic method is characterized by extremely long and powerful sources and a huge measurement range. Its electromagnetic field can therefore be affected by the ionosphere and displacement current. Research on 3D forward modeling and inversion of CSELF electromagnetic data is currently in its infancy. This paper makes exploratory attempts to firstly calculate the 1D extremely low frequency electromagnetic field under ionosphere-air-earth coupling circumstances, and secondly analyze the propagation characteristics of the background electromagnetic field. The 3D staggered-grid finite difference scheme for solving for the secondary electric field is adopted and incorporated with the 1D modeling algorithm to complete 3D forward modeling. Considering that surveys can be carried out in the near field and transition zone for lower frequencies, the 3D Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) inversion of CSELF electromagnetic data is presented (in which the sources, or primary fields, are included), with the aim of directly inverting the impedance data, regardless of where it is acquired. Derivation of the objective functional gradient is the core component in the inversion. Synthetic tests indicate that the well-chosen approximation to the Hessian can significantly speed up the inversion. The model responses corresponding to the coexistence of conductive and resistive blocks show that the off-diagonal components of tensor impedance are much more sensitive to the resistivity variation than the diagonal components. In comparison with conventional scalar inversion, tensor inversion is superior in the recoveries of electric anomalies and background resistivity.
Key wordsELF   Ionosphere   3D inversion   LBFGS   
收稿日期: 2016-07-07;
基金资助:

本研究由国家自然科学基金项目(编号:41374078)和国土资源部地质调查项目(编号:12120113101300)联合资助。

引用本文:   
. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
. 3D LBFGS inversion of controlled source extremely low frequency electromagnetic data[J]. APPLIED GEOPHYSICS, 2016, 13(4): 689-700.
 
[1] Avdeev, D., and Avdeeva, A., 2009, 3D Magnetotelluric inversion using a limited-memory quasi-Newton optimization: Geophysics, 74, F45-F57.
[2] Bannister, P., 1984, ELF propagation update: IEEE J. Ocean. Eng., 9(3), 179-188.
[3] Barr, R., Jones, D. L., and Rodger, C. J., 2000, ELF and VLF radio waves: J. Atmos. Sol.-Terr. Phys., 62(17), 1689-1718.
[4] Bashkuev, Y. B., and Khaptanov, V. B., 2001, Deep radio impedance sounding of the crust using the electromagnetic ?eld of a VLF radio installation: Izv. Phys. Solid Earth, 37(2), 157-165.
[5] Cummer, S. A., 2000, Modeling electromagnetic propagation in the Earth-ionosphere waveguide: IEEE Trans. Antennas Propag., 48(9), 1420-1429.
[6] Di, Q. Y., Wang, M. Y., Wang, R., and Wang, G. J., 2008, Study of the long bipole and large power electromagnetic ?eld: Chin. J. Geophys. (in Chinese), 51(6), 1917-1928.
[7] Farquharson, C. G., Oldenburg, D. W., Haber, E., and Shekhtman, R., 2002, Three-dimensional forward-modeling and inversion algorithms for magnetotelluric data: Proceedings of the 16th Workshop on Electromagnetic Data, Santa Fe, New Mexico, June 16-22.
[8] Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., and Villard, O. G., 1990, Low-frequency magnetic ?eld measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake: Geophys. Res. Lett., 17(9), 1465-1468.
[9] Fu, C. M., Di, Q. Y., and Wang, M. Y., 2010, Calculate electromagnetic fields in stratified medium with layer-matrix method: Chin. J. Geophys. (in Chinese), 53(1), 177-188.
[10] Fu, C. M., Di, Q. Y., Xu, C., et al., 2012, Electromagnetic fields for different type sources with effect of the ionosphere: Chin. J. Geophys. (in Chinese), 55(12), 3958-3968.
[11] Haber, E., Ascher, U. and Oldenburg, D., 2004, Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach: Geophysics, 69, 1216-1228.
[12] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical Prospecting, 55(1), 83-89.
[13] Kulak, A., Mlynarczyk, J., and Kozakiewicz, J., 2013, An analytical model of ELF radiowave propagation in ground-ionosphere waveguides with a multilayered ground: IEEE Trans. Antennas Propag., 61(9), 4803-4809.
[14] Li, D. Q., Di, Q. Y., Wang, M. Y., and Nobes, D., 2015, ‘Earth-ionosphere’ mode controlled source electromagnetic method: Geophys. J. Int., 202, 1848-1858.
[15] Lin, C. H., Tan, H. D., Shu, Q., et al., 2012, Three-dimensional conjugate gradient inversion of CSAMT data: Chin. J. Geophys. (in Chinese), 55(11), 3829-3838.
[16] Liu, D. C. and Nocedal, J., 1989, On the limited memory BFGS method for large scale optimization: Mathematical Programming, 45(1), 503-528.
[17] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215-229.
[18] Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410-424.
[19] Newman, G. A., and Boggs, P. T., 2004, Solution accelerators for large-scale three-dimensional electromagnetic inverse problems: Inverse Problems, 20, s151-s170.
[20] Porrat, D., and Fraser-Smith, A. C., 2003, Propagation at extremely low frequencies: Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley and Sons, Inc.
[21] Saraev, A. K., Pertel, M. I., Parfent’ev, P. A., Prokof’ev, V. E., and Kharlamov, M. M., 1999, Experimental study of the electromagnetic ?eld from a VLF radio set for the purposes of monitoring seismic activity in the North caucasus: Izv. Phys. Solid Earth, 35(2), 101-108.
[22] Sasaki, Y., 2001, Full 3D inversion of electromagnetic data on PC: J. Appl. Geophys., 46, 45-54.
[23] Silber, I., Price, C., Galanti, E. and Shuval, A., 2015, Anomalously strong vertical magnetic ?elds from distant ELF/VLF sources: J. Geophys. Res. Space Physics, 120, 6036-6044.
[24] Simpson, J. J., 2009, Current and future applications of 3-D global Earth-Ionosphere models based on the full-vector Maxwell’s equations FDTD method: Surv. Geophys., 30(2), 105-130.
[25] Simpson, J. J., Heikes, R. P., and Ta?ove, A., 2006, FDTD modeling of a novel ELF radar for major oil deposits using a three-dimensional geodesic grid of the Earth-ionosphere waveguide: IEEE Trans. Antennas Propag., 54(6), 1734-1741.
[26] Simpson, J. J., and Ta?ove, A., 2004, Three-dimensional FDTD modeling of impulsive ELF propagation about the Earth-sphere: IEEE Trans. Antennas Propag., 52(2), 443-451.
[27] Simpson, J. J., and Taflove, A., 2005, Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell’s equations: Geophys. Res. Lett., 32(9), L09302.
[28] Simpson, J. J., and Taflove, A., 2007, A review of progress in FDTD Maxwell’s equations modeling of impulsive subionospheric propagation below 300 kHz: IEEE Trans. Antennas Propag., 55(6), 1582-1590.
[29] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric: data space method: Physics of the Earth and Planetary Interiors, 150, 3-14.
[30] Velikhov, E. P., Zhamaletdinov, A. A., Shevtsov, A. N., et al., 1998, Deep electromagnetic studies with the use of powerful ELF radio installations: Izv. Phys. Solid Earth, 34(8), 615-632.
[31] Wait, J. R., 1958, An extension to the mode theory of VLF ionospheric propagation: J. Geophys. Res., 63(1), 125-135.
[32] Wait, J. R., 1970, Electromagnetic Waves in Strati?ed Media: Vol. 147, Pergamon Press, United Kingdom.
[33] Wang, Y., and Cao, Q. S., 2011, Analysis of seismic electromagnetic phenomena using the FDTD method: IEEE Trans. Antennas Propag., 59(11), 4171-4180.
[34] Wang, Y. and Cao, Q. S., 2015, Extremely low-frequency surface response caused by underground resource: IET Microw. Antennas Propag., 9(11), 1193-1199.
[35] Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications: Electromagnetic Methods in Applied Geophysics, SEG, 131-312.
[36] Weiss, C. J., and Constable, S., 2006, Mapping thin resistors and hydrocarbons with marine EM methods, Part II-Modeling and analysis in 3D: Geophysics, 71, 321-332.
[37] Zhamaletdinov, A., Semenov, V., Shevtsov, A., et al., 2002, Geoelectrical structure of the baltic shield and its vicinity through the lithosphere and mantle: Acta Geophysica Polonica, 50(4), 583-606.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[3] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[4] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[5] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[6] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司