APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 712-720    DOI: 10.1007/s11770-016-0591-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Pade有理展开的磁性界面正反演方法
张冲1,黄大年1,张凯2,浦义涛3,于平1
1. 吉林大学地球探测科学与技术学院,吉林长春130026
2. 吉林大学数学学院,吉林长春130026
3. 中国石油东方地球物理公司塔里木物探处,新疆库尔勒841001
Magnetic interface forward and inversion method based on Padé approximation
Zhang Chong1, Huang Da-Nian1, Zhang Kai2, Pu Yi-Tao3, and Yu Ping1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Mathematics School and Institute, Jilin University, Changchun 130026, China.
3. Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Korla 841001, China.
 全文: PDF (944 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 波数域磁性界面正反演方法是利用Taylor级数对指数函数展开并进行Fourier变换而实现。在展开步长大、展开点邻域无界的情况下,Taylor级数展开不收敛。为此,本文提出基于Pade有理展开替代Taylor级数展开的磁性界面正反演方法。与Taylor级数展开相比较,Pade有理展开收敛更稳定、逼近更准确。模型试验验证了Pade有理展开磁性界面正反演方法的有效性。应用该方法对加拿大Matagami地区实测数据进行反演,得到了比较稳定、合理的地下磁性界面分布。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词Pade有理展开   磁性界面   正反演   Taylor级数展开     
Abstract: The magnetic interface forward and inversion method is realized using the Taylor series expansion to linearize the Fourier transform of the exponential function. With a large expansion step and unbounded neighborhood, the Taylor series is not convergent, and therefore, this paper presents the magnetic interface forward and inversion method based on Padé approximation instead of the Taylor series expansion. Compared with the Taylor series, Padé’s expansion’s convergence is more stable and its approximation more accurate. Model tests show the validity of the magnetic forward modeling and inversion of Padé approximation proposed in the paper, and when this inversion method is applied to the measured data of the Matagami area in Canada, a stable and reasonable distribution of underground interface is obtained.
Key wordsPadé   approximation   magnetic interface   forward and inversion method   Taylor series expansion   
收稿日期: 2016-07-05;
基金资助:

本研究由深部探测技术与实验研究专项SinoProbe-09-01-移动平台综合地球物理数据处理与集成系统项目(编号:201311192)和吉林大学研究生创新基金(编号:2015025)联合资助。

引用本文:   
. 基于Pade有理展开的磁性界面正反演方法[J]. 应用地球物理, 2016, 13(4): 712-720.
. Magnetic interface forward and inversion method based on Padé approximation[J]. APPLIED GEOPHYSICS, 2016, 13(4): 712-720.
 
[1] Arkani-Hamed, J., and Verhoef, J., 1989, Generalized Inversion of Scalar Magnetic Anomalies: Magnetization of the Crust off the East Coast of Canada: Properties and processes of earth’s lower crust, 255−270.
[2] Blakely, R. J., 1995, Potential theory in gravity and magnetic applications: Cambridge University Press, Cambridge (UK), XIX+ 441 p.
[3] Calvert, A. J., and Li, Y., 1999, Seismic reflection imaging over a massive sulfide deposit at the Matagami mining camp, Quebec: Geophysics, 64(1), 24−32.
[4] Chai Y, and Jia J., 1990, Parker’s formulas in different forms and their applications to oil gravity survey: Oil Geophysical Prospecting (in Chinese), 25(3), 321−332.
[5] Dunlop, D. J., Özdemir, Ö., and Costanzo-Alvarez, V., 2010, Magnetic properties of rocks of the Kapuskasing uplift (Ontario, Canada) and origin of long-wavelength magnetic anomalies: Geophysical Journal International, 183(2), 645−658.
[6] Eaton, D. W., Adam, E., Milkereit, B., et al., 2010, Enhancing base-metal exploration with seismic imaging This article is one of a series of papers published in this Special Issue on the theme Lithoprobe-parameters, processes, and the evolution of a continent: Canadian Journal of Earth Sciences, 47(5), 741−760.
[7] Gao, G., Kang, G., Li, G., et al., 2015, Crustal magnetic anomaly and Curie surface beneath Tarim Basin, China, and its adjacent area: Canadian Journal of Earth Sciences, 52(6), 357−367.
[8] Garland, G. D., 1951, Combined analysis of gravity and magnetic anomalies: Geophysics, 16(1), 51−62.
[9] Korte, M., and Mandea, M., 2016, Geopotential field anomalies and regional tectonic features-two case studies: southern Africa and Germany: Solid Earth, 7, 751−768.
[10] Li, S., Li, Y., and Meng, X., 2012, The 3d magnetic structure beneath the continental margin of the northeastern south china sea: Applied Geophysics, 9(3), 237−246.
[11] Li, C. F., and Wang, J., 2016, Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia: Marine Geophysical Research, 37(1), 1−20.
[12] Liu, T. Y., Zhu, L. X., Deng, R. L., and Li, Q. H., 2002, Optimum inversion of sophisticated gravitational and magnetic anomalies by mufti-stage decision: Oil Geophysical Prospecting (in Chinese), 37(3), 349−353.
[13] Ludden, J., and Hynes, A., 2000, The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada: Canadian Journal of Earth Sciences, 37(2−3), 459−476.
[14] Luo, Y., Wu, M. P., Wang, P., et al., 2015, Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: calculation and application: Applied Geophysics, 12(3), 283−291.
[15] Martelet, G., Perrin, J., Truffert, C., and Deparis, J., 2013, Fast mapping of magnetic basement depth, structure and nature using aeromagnetic and gravity data: combined methods and their application in the Paris Basin: Geophysical prospecting, 61(4), 857−873.
[16] Mathews, J. H., and Fink, K. D., 1999, Numerical methods using MATLAB: Upper Saddle River, NJ, Prentice hall.
[17] Mcenroe, S. A., Langenhorst, F., Robinson, P., et al., 2004, What is magnetic in the lower crust: Earth and Planetary Science Letters, 226(1), 175−192.
[18] Oldenburg, D. W., 1974, The inversion and interpretation of gravity anomalies: Geophysics, 39(4), 526−536.
[19] Parker, R. L., 1972, The rapid calculation of potential anomalies: Geophysical Journal of the Royal Astronomical Society, 31(4), 447−455.
[20] Pilkington, M., and Percival, J. A., 2001, Relating crustal magnetization and satellite-altitude magnetic anomalies in the Ungava peninsula, northern Quebec, Canada: Earth and Planetary Science Letters, 194(1), 127−133.
[21] Pinet, C., Jaupart, C., Mareschal, J. C., et al., 1991, Heat flow and structure of the lithosphere in the eastern Canadian Shield: Journal of Geophysical Research: Solid Earth, 96(B12), 19941−19963.
[22] Ross, P. S., Bourke, A., and Fresia, B., 2013, A multi-sensor logger for rock cores: Methodology and preliminary results from the Matagami mining camp, Canada: Ore Geology Reviews, 53, 93−111.
[23] Tanaka, A., Okubo, Y., and Matsubayashi, O., 1999, Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia: Tectonophysics, 306(3), 461−470.
[24] Telmat, H., Mareschal, J. C., Gariépy, C., David, J., et al., 2000, Crustal models of the eastern Superior Province, Quebec, derived from new gravity data: Canadian Journal of Earth Sciences, 37(2−3), 385−397.
[25] Wang, R. H., 2012, Numerical approximation: Higher Education Press, Beijing (China).
[26] Yang, W., Cao, W., Chung, T., and Morris, J., 2005, Applied numerical methods using matlab: Scitech Book News, 47, xiv, 509.
[27] Zhang, C., Huang, D., Wu, G., et al., 2015, Calculation of moho depth by gravity anomalies in Qinghai-Tibet plateau based on an improved iteration of Parker-Oldenburg inversion: Pure & Applied Geophysics, 172, 1−12.
[1] 谭尘青, 吴燕冈, 韩立国, 巩向博, 崔杰. 平移初至点走时动校正反演[J]. 应用地球物理, 2011, 8(3): 217-224.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司