APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 315-325    DOI: 10.1007/s11770-016-0563-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
捷克地下储存系统基岩的不稳定性问题
Lucie Novakova1, Milan Broz2, Jiri Zaruba3, Karel Sosna3, Jan Najser3, Lenka Rukavickova4, Jan Franek4, Vladimir Rudajev5
1. Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, v.v.i., V Holesovickach 41, 182 00 Prague
2. Institute of Geophysics, Academy of Sciences of the Czech Republic, v.v.i., Bocni 1401, 141 31 Prague, Czech Republic
3. ARCADIS CZ a.s. Division Geotechnika, Geologicka 988/4, 152 00 Prague, Czech Republic
4. Czech Geological Survey, Geologicka 6, 152 00 Prague, Czech Republic
5. Εmeritus scientist, Academy of Sciences of the Czech Republic, Narodni 1009/3, 110 00 Prague, Czech Republic
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
Lucie Novakova1, Milan Broz2, Jiri Zaruba3, Karel Sosna3, Jan Najser3, Lenka Rukavickova4, Jan Franek4, and Vladimir Rudajev5
1. Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, v.v.i., V Holesovickach 41, 182 00 Prague
2. Institute of Geophysics, Academy of Sciences of the Czech Republic, v.v.i., Bocni 1401, 141 31 Prague, Czech Republic
3. ARCADIS CZ a.s. Division Geotechnika, Geologicka 988/4, 152 00 Prague, Czech Republic
4. Czech Geological Survey, Geologicka 6, 152 00 Prague, Czech Republic
5. Εmeritus scientist, Academy of Sciences of the Czech Republic, Narodni 1009/3, 110 00 Prague, Czech Republic
 全文: PDF (360 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地下储存系统在全球范围内在地热能、或放射性废物处置方面正用于天然气(CH4)地质储存、CO2地质处置。我们引入一个复杂的方法检测在深地质地下储存库基岩不稳定性所带来的风险。有关地下空洞引起的基岩不稳定性的研究和讨论了许多年。在捷克的波希米亚地块(中欧)在地质和构造上均很复杂。长期的地质和采矿研究,自然和诱发地震、氡的放射,和花岗岩的性质为在捷克放射性废物处置的潜在存储地提供了有用的信息。另外,捷克,140 Bq m−3平均浓度氡是世界上平均氡浓度最高的。基岩不稳定性可能从微观特征的出现,如粒度、矿物的取向,和微裂缝。任何地下储存设施的建设必须考虑储存的物质和地质背景。在捷克,花岗岩和花岗岩是最好的地下储存地。微裂缝网络与及其迁移是岩石特殊情况,其变化甚大。此外,基质的孔隙度也影响岩石的机理。任何地下存储网络位置的选择必须十分仔细。作者认为,一个特定地点研究一组复杂的参数要从微观到宏观,岩石类型以确保在施工、操作过程中以及封闭后存储仍然是安全的,稳定的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词二地下储存不稳定问题   地震   波希米亚地块     
Abstract: Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Long-term geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m−3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Key wordsUnderground storage   instability   seismicity   Bohemian Massif   
收稿日期: 2015-11-27;
引用本文:   
. 捷克地下储存系统基岩的不稳定性问题[J]. 应用地球物理, 2016, 13(2): 315-325.
. Βedrock instability of underground storage systems in the Czech Republic, Central Europe[J]. APPLIED GEOPHYSICS, 2016, 13(2): 315-325.
 
[1] Babuška, V., and Plomerová, J., 2006, European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy: Physics of the Earth and Planetary Interior, 158, 264-280.
[2] Barnet, I., 2005, The maps of Radon index of the geological basement 1:50000: Czech Geological Survey Press, Prague, Czech Republic.
[3] Barnet, I., 1992, Radon in the geological environment: Czech Geological Survey Press, Prague, Czech Republic (in Czech), 33pp.
[4] Boulanger, R. W., and Idriss, I. M., 2012, Evaluation of overburden stress effects on liquefaction resistance at Duncan Dam: Canadian Geotechnical Journal, 49(9), 1052-1058.
[5] Bourgeois, O., Ford, M., Diraison, M., Le Carlier De Veslud, C., Gerbault, M., Pik, R., Ruby, N., and Bonnet, S., 2007, Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland: International Journal of Earth Sciences, 96, 1003-1031.
[6] Brandmayr, M., Dallmeyer, R. D., Handler, R., and Wallbrecher, E., 1995, Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity: Tectonophysics, 248, 97-116.
[7] Brosse, É., Bildstein, O., and Swennen, R., 2005, Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage: Oil & Gas Science and Technology-Review IFP, 1, 9-18.
[8] Commoner, B., 1971, The closing circle: nature, man, and technology: Alfred A. Knopf press, New York, USA, 326pp.
[9] iacute;?, R., Hole?ko, J., and Rudajev, V., 1999, Analyses of acoustic emission and underground tremor time series from rockbursts hazardous areas of Ostrava-Karviná Mines: Acta Montana, Series A, 17(114), 5-23.
[10] Dézes, P., Schmid, S. M., and Ziegler, P. A., 2004, Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere: Tectonophysics, 389, 1-33.
[11] Dörr, W., ?ela?niewicz, A., Bylina, P., Schastok, J., Franke, W., Haack, U., and Kulicki, C., 2006, Tournaisian age of granitoids from the Odra Fault Zone (southwestern Poland): equivalent of the Mid-German Crystalline High: International Journal of Earth Sciences, 95, 341-349.
[12] Dörr, W., and Zulauf, G., 2010, Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone: International Journal of Earth Sciences, 99, 299-325.
[13] Edel, J. B., Schulmann, K., and Holub, F. V., 2003, Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence: Journal of the Geological Society, 160, 209-218.
[14] Eff-Darwich, A., Coello, J., Vinas, R., Soler, V., Martin-Luis, M. C., Farrujia, I., and Quesada, M.L., 2008, Underground temperature measurements as a tool for volcanic activity monitoring in the island of Tenerife, Canary Islands: Pure and Applied Geophysics, 165(1), 135-145.
[15] Franke, W., 2000, The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution: Geological Society Special Publication, 179, 35-56.
[16] Franke, W., 2006, The Variscan orogen in Central Europe: construction and collapse, in Gee, D.G. and Stephenson, R.A. Eds., European Lithosphere Dynamics (Memoirs 32): London: Geological Society, 333-343.
[17] Gruber, V., Tollefsen, T., De Cort, M., and Bossew, P., 2010, Status of the European Atlas of Natural Radiation, IES - Institute for Environment and Sustainability: Ispra, JRC press, Italy.
[18] Holub, K., Hole?ko, J., Rušajová, J., and Dombková, A., 2012, Long-term Development of Seismic Monitoring Networks in the Ostrava-Karviná Coal Mine District: Acta Geodynamica et Geomaterialia, 9(2), 115-132.
[19] Holub, K., Kaláb, Z., Knejzlík, J., and Rušajová J., 2009, Contribution of the Institute of Geonics of the ASCR Ostrava to Seismological Monitoring in Silesia and Northern Moravia: Acta Geodynamica et Geomaterialia, 6(3), 391-398.
[20] Horálek, J., Fischer, T., Boušková, A., and Jedli?ka, P., 2000, The Western Bohemian/Vogtland region in the light of the Webnet network: Studia Geophysica and Geodaetica, 44(2), 107-125.
[21] Horálek, J., Hampl., F., Boušková, A., and Fischer, T., 1996, Seismic regime of the West Bohemian earthquakes swarm region: preliminary results: Studia Geophysica et Geodaetica, 40, 398-412.
[22] Hosseinzadeh, A., Nobarinasab, M., Soroush, A., and Lofti, V., 2012, Coupled stress-seepage analysis of Karun III concrete arch dam: Proceedings of the ICE - Geotechnical Engineering, 166(5), 483-501.
[23] Janoušek, V., and Holub, F. V., 2007, The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif: Proceedings of the Geologists Association, 118, 75-86.
[24] Kang, H., Zhang, X., Si, L., Wu, Y., and Gao, F., 2010, In-situ stress measurements and stress distribution characteristics in underground coal mines in China: Engineering Geology, 116, 333-345.
[25] Karník, V., Michal, E., and Molnár, A., 1957, The Earthquake catalogue of the Czech and Slovak Republic from 1956: Travaux Geophysical Institute AV CR, Prague, Czech Republic, (in German), 69pp.
[26] Karník, V., Schenková, Z., and Schenk, V., 1987, Time pattern of the swarm of December 1985- March 1986 in West Bohemia, in Procházková, D. Ed., Earthquake swarm 1985/1986 in Western Bohemia: Geophysical Institute AV CR, Prague, Czech Republic, 328-342.
[27] Kolínský, P., Valenta, J., and Ga?dová, R., 2012, Seismicity, groundwater level variations and earth tides in the Hronov-Po?í?í Fault Zone, Czech Republic: Acta Geodynamica et Geomaterialia, 9(2) 191-209.
[28] Konopásek, J., and Schulmann, K., 2005, Contrasting early carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides): Journal of the Geological Society, 162, 463-470.
[29] Korten, D.C., 2001, When Corporations Rule the World: Berrett-Koehler Publishers, San Francisco, California, 384 pp.
[30] Liu, C. R., He, X., Mitri, H., Aziz, N., Nie, B., Wang, Y., Liu, M., Saharan, M. R., Ren, T. X., Chen, W., Li, X., and Zhang, R., 2011, Distribution laws of in-situ stress in deep underground coal mines: Procedia, ISMSSE 2011, 26, BYZ78.
[31] Marty, N. C. M., Fritz, B., Clement, A., and Michau, N., 2010, Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository: Applied Clay Science, 47(1-2), 82-90.
[32] Matte, P., Maluski, H., Rajlich, P., and Franke,W., 1990, Terrane boundaries in the Bohemian Massif - result of large- scale Variscan Shearing: Tectonophysics, 177(1-3), 151-170.
[33] McKibben, B., 1989, The end of nature: Random House, New York, USA, 226 pp.
[34] Medaris, G., Jelínek, E., and Mísa?, Z., 1995, Czech eclogites-terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif, Czech Republic: European Journal of Mineralogy, 7, 7-28.
[35] O’Brien, P. J., 2000, The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures, in Franke, W., Haak, V., Oncken, O., and Tanner, D. Eds., Orogenic Processes: Quantification and Modelling in the Variscan Belt (Special Publication 179): Geological Society, London, 369-386.
[36] Procesi, M., Cantucci, B., Buttinelli, M., Armezzani, G., Quattrocchi, F., and Boschi, E., 2013, Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy, Latium Region case study (Central Italy): Applied Energy, 110, 104-131.
[37] Rajchl, M., Uli?ný, D., Grygar, R., and Mach, K., 2009, Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe): Basin Research, 21(3), 269-294.
[38] Ross, N., Palaniappan, M., Gleick, P. H., Allen, L., Cohen, M. J., Christian-Smith, J., and Smith, C., 2010, Cleaning the Waters. A focus on water quality solutions: UNON, Publishing Services Section, Nairobi. 91pp.
[39] Rudajev, V., 1967, Seismicity in the rockbursts region at Kladno: Freiberger Forschungshefte, (in German), C 225.
[40] Saeed, A.D., 2001, Nuclear tracks: A success story of the 20th century: Radiation Measurements, 34, 5-13.
[41] Schenk, V., Schenková, Z., Jechumtálová, Z., and Pichl, R., 2012, Crustal deformations in the epicentral area of the West Bohemia 2008 earthquake swarm in central Europe: Journal of geophysical research, 117, B07408.
[42] Schulmann, K., Konopásek, J., Janoušek, V., Lexa, O., Lardeaux, J. M., Edel, J. B., Štípská, P., and Ulrich, S., 2009, An Andean type Palaeozoic convergence in the Bohemian Massif: Comptes Rendus Geoscience, 341, 266-286.
[43] Shi, L., Gao, S. S., and Xiong, W., 2012, Physical simulation of the mechanism for operation of water-encroached (flooded) underground gas storage facilities: Chemistry and technology of fuels and oils, 47(6), 426-433.
[44] Stec, K., 2007, Characteristics of seismic activity of the Upper Silesian Coal Basin in Poland: Geophysical Journal International, 168, 757-768.
[45] Ulrych, J., Pivec, E., Lang, M., Balogh, B., and Kropá?ek, V., 1999, Cenozoic intraplate volcanics rock series of the Bohemian Massif: a review: Geolines, 9, 123-129.
[46] Waclawik, P., Ptá?ek, J., and Grygar, R., 2013, Structural and stress analysis in mining practise in the Upper Silesian coal basin: Acta geodynamica et Geomaterialia, 10(2), 255-265.
[47] Wold?ich, J. N., 1901, Earthquake in the north-eastern Bohemia on January 10, 1901: Transactions of the Czech Academy of Sciences (in Czech), 10(25), 1-33.
[48] Ziegler, P. A., and Dézes, P., 2007, Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms: Global and Planetary Change, 58, 237-269.
[49] Zoback, M. D., and Gorelick, S. M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide: Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10164-10168.
[50] aacute;k, J., Holub, F. V., and Verner, K., 2005a, Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif): International Journal of Earth Sciences, 94, 385-400.
[51] aacute;k, J., Schulmann, K., and Hrouda, F., 2005b, Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement: Journal of Structural Geology, 27, 805-822.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 赵虎,徐浩,邸志欣,张金淼,刘志鹏. 采集参数对观测系统质量影响分析[J]. 应用地球物理, 2018, 15(3-4): 413-419.
[3] 陈猛,刘嘉辉,崔永福,胡天跃,陈飞旭,匡伟康,张振. 基于迭代虚同相轴方法的叠后层间多次波衰减[J]. 应用地球物理, 2018, 15(3-4): 491-499.
[4] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[5] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[6] 高峰,魏建新,狄帮让. 地震物理模拟中Q值测量方法[J]. 应用地球物理, 2018, 15(1): 46-56.
[7] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[8] 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释[J]. 应用地球物理, 2018, 15(1): 125-136.
[9] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[10] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[11] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[12] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[13] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司