APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 307-314    DOI: 10.1007/s11770-016-0559-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于速度频散因子表征的CO2驱地震监测方法
张军华1,2,李军1,2,肖文1,2,谭明友3,张云银3,崔世凌3,曲志鹏3
1. 中国石油大学(华东)地学院,青岛 266580
2.海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛266071
3. 胜利油田物探研究院,东营 257015
Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor
Zhang Jun-Hua1,2, Li Jun1,2, Xiao Wen1,2, Tan Ming-You3, Zhang Yun-Ying3, Cui Shi-Ling3, and Qu Zhi-Peng3
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Geophysical Research Institute of Shengli Oilfield Branch Company, Sinopec, Dongying 257015, China.
 全文: PDF (1414 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 二氧化碳注入地层驱油过程中会引起地震波速度的频散现象,这是地震波传播过程中相速度随频率发生变化所造成的。所以综合考虑二氧化碳气驱情况下的速度频散效应,提取频散因子,进而动态监测气驱前后的油藏变化,具有方法的可行性。本文从Robinson频散褶积模型出发,首先推导了速度频散因子的定量表征式,构建了含有速度频散因子的反演方程,给出了四个处理步骤的实现过程,其中包括广义S变换谱分解、井旁道子波提取、谱均衡处理和阻尼最小二乘频散因子提取。根据粘弹性介质理论,建立了基于Q值变化的衰减地层模型,对正演后的偏移剖面进行了时频谱分析,在此基础上进行了频散因子提取与对比,验证了方法的有效性。最后,将本文方法应用到胜利油田高89井区注气前后两期资料的目标处理与驱油监测中。从提取的两期地震频散因子剖面和切片来看,方法能较好地指示二氧化碳驱前后的差异性,研究成果与井场实际考察结果非常吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词二氧化碳驱油   速度频散因子   G89井区   油藏动态监测     
Abstract: The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.
Key words:   
收稿日期: 2016-01-13;
基金资助:

本研究由中石化先导项目(编号:P14085)资助。

引用本文:   
. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor[J]. APPLIED GEOPHYSICS, 2016, 13(2): 307-314.
 
[1] Zhang, S. X., Yin X. Y., Zhang, G. Z., et al, 2011, Inversion method for the velocity dispersion-dependent attribute of P-wave: Geophysical Prospecting for Petroleum, 50(3), 219-225.
[2] Zhang, Z., Yin, X. Y., and Zong, Z. Y., 2013, A new frequency-dependent AVO attribute and its application in fluid identification: 75th EAGE Conference & Exhibition incorporating SPE EUROPEC, London, Britain.
[3] Carcione, J. M., Kosloff, D., and Kosloff, R., 1988, Wave propagation simulation in a linear viscoacoustic medium: Geophysical Journal International, 93(2), 393−401.
[4] Castagna, J. P., Sun, S., and Siegfried, R. W., 2003, Instantaneous spectral analysis: Detection of low frequency shadows associated with hydrocarbons: The Leading Edge, 22(2), 120-127.
[5] Davis, T., 2010, The state of EOR with CO2 and associated seismic monitoring: The leading edge, 29(1), 31-33.
[6] Lin, K., He, Z. H., Xiong, X. J., et al., 2014, AVO forwarding modeling in two-phase media: multiconstrained matrix mineral modulus inversion: Applied Geophysics, 11(4), 395-404.
[7] Monea, M., Knudsen, R., Worth, K., et al., 2009, Considerations for monitoring, mitigation, and verification for GS of CO2: Geophysical Monograph, 183, 303-316.
[8] Pawar, R., Lorenz, J., Byrer, C., et al., 2006, Sequestration of CO2 in a depleted sandstone oil reservoir: results of a field demonstration test: 8th international conference on Greenhouse Gas Control technologies, Trondhein, Norway.
[9] Sun, C. Y., and Li, Z. C., 2011, Foundation of seismic wave dynamics: Petroleum Industry Press, China, 178-182.
[10] Sun, W. Y., Zhang, H. X., and Sun, Y., 2013, Apply S-transform to extract the attenuation and dispersion attributes of the seismic wave to detect Oil and Gas: Periodical of Ocean University of China, 43(10), 83-87.
[11] Taner, M. T., Koehler, F., and Sheriff, R., 1979, Complex seismic trace analysis: Geophysics, 44(6), 1041-1063.
[12] Wilson, A., Chapman, M., and Li, X. Y., 2009, Frequency-dependent AVO inversion: SEG Technical Program Expanded Abstracts, 341-345.
[13] Wu, X., Chapman, M., Wilson, A., et al., 2010, Estimating seismic dispersion from pre-stack data using frequency dependent AVO inversion: SEG Technical Program Expanded Abstracts, 425-429.
[14] Zhang, S. X., Yin X. Y., Zhang, G. Z., et al, 2011, Inversion method for the velocity dispersion-dependent attribute of P-wave: Geophysical Prospecting for Petroleum, 50(3), 219-225.
[15] Zhang, Z., Yin, X. Y., and Zong, Z. Y., 2013, A new frequency-dependent AVO attribute and its application in fluid identification: 75th EAGE Conference & Exhibition incorporating SPE EUROPEC, London, Britain.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司